mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-08-18 07:58:04 +00:00
feat: models wip
This commit is contained in:
parent
97a1cd0539
commit
09cddbedc0
8
gpt4all/models/__init__.py
Normal file
8
gpt4all/models/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
from .configuration_gpt_jr import GPTJRConfig
|
||||
from .modeling_gpt_jr import GPTJRForCausalLM
|
||||
|
||||
|
||||
__all__ = [
|
||||
"GPTJRConfig",
|
||||
"GPTJRForCausalLM"
|
||||
]
|
148
gpt4all/models/configuration_gpt_jr.py
Normal file
148
gpt4all/models/configuration_gpt_jr.py
Normal file
@ -0,0 +1,148 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" GPT-J model configuration"""
|
||||
from collections import OrderedDict
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
|
||||
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
|
||||
}
|
||||
|
||||
|
||||
class GPTJRConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the GPT-J
|
||||
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
||||
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
||||
for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50400):
|
||||
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`GPTJModel`].
|
||||
n_positions (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
n_embd (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
n_layer (`int`, *optional*, defaults to 28):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
n_head (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
rotary_dim (`int`, *optional*, defaults to 64):
|
||||
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
||||
n_inner (`int`, *optional*, defaults to None):
|
||||
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
||||
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
||||
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
||||
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for the embeddings.
|
||||
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for the attention.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
||||
The epsilon to use in the layer normalization layers.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
||||
Scale attention weights by dividing by sqrt(hidden_size).
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import GPTJModel, GPTJConfig
|
||||
|
||||
>>> # Initializing a GPT-J 6B configuration
|
||||
>>> configuration = GPTJConfig()
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = GPTJModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "gptj"
|
||||
attribute_map = {
|
||||
"max_position_embeddings": "n_positions",
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=50400,
|
||||
n_positions=2048,
|
||||
n_embd=4096,
|
||||
n_layer=28,
|
||||
n_head=16,
|
||||
rotary_dim=64,
|
||||
n_inner=None,
|
||||
activation_function="gelu_new",
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attn_pdrop=0.0,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
scale_attn_weights=True,
|
||||
use_cache=True,
|
||||
bos_token_id=50256,
|
||||
eos_token_id=50256,
|
||||
tie_word_embeddings=False,
|
||||
encoder_ndim=4096,
|
||||
alpha=.5,
|
||||
encoder_path=None,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
self.n_inner = n_inner
|
||||
self.rotary_dim = rotary_dim
|
||||
self.activation_function = activation_function
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.scale_attn_weights = scale_attn_weights
|
||||
self.use_cache = use_cache
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
self.encoder_ndim = encoder_ndim
|
||||
self.alpha = alpha
|
||||
self.encoder_path = encoder_path
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
||||
)
|
831
gpt4all/models/modeling_gpt_jr.py
Normal file
831
gpt4all/models/modeling_gpt_jr.py
Normal file
@ -0,0 +1,831 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch GPT-J model."""
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers import AutoModel
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
||||
from gpt4all.models.configuration_gpt_jr import GPTJRConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
GPTJR_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"EleutherAI/gpt-j-6B",
|
||||
# See all GPT-J models at https://huggingface.co/models?filter=gptj
|
||||
]
|
||||
|
||||
|
||||
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
||||
dim = x.shape[-1]
|
||||
if seq_len is None:
|
||||
seq_len = x.shape[seq_dim]
|
||||
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
||||
sinusoid_inp = (
|
||||
torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
|
||||
)
|
||||
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
||||
|
||||
|
||||
def rotate_every_two(x):
|
||||
x1 = x[:, :, :, ::2]
|
||||
x2 = x[:, :, :, 1::2]
|
||||
x = torch.stack((-x2, x1), dim=-1)
|
||||
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
||||
|
||||
|
||||
def duplicate_interleave(m):
|
||||
"""
|
||||
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
|
||||
"""
|
||||
dim0 = m.shape[0]
|
||||
m = m.view(-1, 1) # flatten the matrix
|
||||
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
|
||||
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
|
||||
return m
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(x, sincos, offset=0):
|
||||
sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos)
|
||||
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
||||
return (x * cos) + (rotate_every_two(x) * sin)
|
||||
|
||||
|
||||
|
||||
|
||||
class GPTJRAttention(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
|
||||
max_positions = config.max_position_embeddings
|
||||
self.register_buffer(
|
||||
"bias",
|
||||
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
||||
1, 1, max_positions, max_positions
|
||||
),
|
||||
)
|
||||
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
||||
|
||||
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_attention_heads
|
||||
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
||||
f" `num_attention_heads`: {self.num_attention_heads})."
|
||||
)
|
||||
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.rotary_dim = None
|
||||
if config.rotary_dim is not None:
|
||||
self.rotary_dim = config.rotary_dim
|
||||
|
||||
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
||||
"""
|
||||
Splits hidden dim into attn_head_size and num_attention_heads
|
||||
"""
|
||||
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
if rotary:
|
||||
return tensor
|
||||
if len(tensor.shape) == 5:
|
||||
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features)
|
||||
elif len(tensor.shape) == 4:
|
||||
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
||||
else:
|
||||
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
||||
|
||||
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
||||
"""
|
||||
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
||||
"""
|
||||
if len(tensor.shape) == 5:
|
||||
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
||||
elif len(tensor.shape) == 4:
|
||||
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||
else:
|
||||
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
||||
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
def _attn(
|
||||
self,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
):
|
||||
|
||||
# compute causal mask from causal mask buffer
|
||||
query_length, key_length = query.size(-2), key.size(-2)
|
||||
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
|
||||
|
||||
# Keep the attention weights computation in fp32 to avoid overflow issues
|
||||
# TODO: do we need to do this with bfloat16??
|
||||
# query = query.to(torch.float32)
|
||||
# key = key.to(torch.float32)
|
||||
|
||||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
||||
|
||||
mask_value = torch.finfo(attn_weights.dtype).min
|
||||
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
||||
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
||||
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
||||
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
||||
|
||||
attn_weights = attn_weights / self.scale_attn
|
||||
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
attn_weights = attn_weights.to(value.dtype)
|
||||
attn_weights = self.attn_dropout(attn_weights)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attn_weights = attn_weights * head_mask
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
|
||||
return attn_output, attn_weights
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: Optional[torch.FloatTensor],
|
||||
encoder_hidden_states: Optional[torch.FloatTensor],
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Union[
|
||||
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
||||
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
||||
]:
|
||||
|
||||
query = self.q_proj(hidden_states)
|
||||
# if we are doing cross attention
|
||||
if encoder_hidden_states is not None:
|
||||
key = self.k_proj(encoder_hidden_states)
|
||||
value = self.v_proj(encoder_hidden_states)
|
||||
else:
|
||||
key = self.k_proj(hidden_states)
|
||||
value = self.v_proj(hidden_states)
|
||||
|
||||
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
||||
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
||||
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
||||
|
||||
seq_len = key.shape[1]
|
||||
offset = 0
|
||||
|
||||
if layer_past is not None:
|
||||
offset = layer_past[0].shape[-2]
|
||||
seq_len += offset
|
||||
|
||||
if self.rotary_dim is not None:
|
||||
k_rot = key[:, :, :, : self.rotary_dim]
|
||||
k_pass = key[:, :, :, self.rotary_dim :]
|
||||
|
||||
q_rot = query[:, :, :, : self.rotary_dim]
|
||||
q_pass = query[:, :, :, self.rotary_dim :]
|
||||
|
||||
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
||||
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
||||
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
|
||||
|
||||
key = torch.cat([k_rot, k_pass], dim=-1)
|
||||
query = torch.cat([q_rot, q_pass], dim=-1)
|
||||
else:
|
||||
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
||||
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
||||
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
||||
|
||||
key = key.permute(0, 2, 1, 3)
|
||||
query = query.permute(0, 2, 1, 3)
|
||||
|
||||
if layer_past is not None:
|
||||
past_key = layer_past[0]
|
||||
past_value = layer_past[1]
|
||||
key = torch.cat((past_key, key), dim=-2)
|
||||
value = torch.cat((past_value, value), dim=-2)
|
||||
|
||||
if use_cache is True:
|
||||
present = (key, value)
|
||||
else:
|
||||
present = None
|
||||
|
||||
# compute self-attention: V x Softmax(QK^T)
|
||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||
|
||||
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
||||
attn_output = self.out_proj(attn_output)
|
||||
attn_output = self.resid_dropout(attn_output)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs # a, present, (attentions)
|
||||
|
||||
|
||||
class GPTJRCrossAttention(GPTJRAttention):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
max_positions = config.max_position_embeddings
|
||||
self.register_buffer(
|
||||
"bias",
|
||||
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
||||
1, 1, max_positions, max_positions
|
||||
),
|
||||
)
|
||||
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
||||
|
||||
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_attention_heads
|
||||
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
||||
f" `num_attention_heads`: {self.num_attention_heads})."
|
||||
)
|
||||
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.v_proj = nn.Linear(config.encoder_ndim, self.embed_dim, bias=False)
|
||||
self.q_proj = nn.Linear(config.encoder_ndim, self.embed_dim, bias=False)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
||||
self.rotary_dim = None
|
||||
if config.rotary_dim is not None:
|
||||
self.rotary_dim = config.rotary_dim
|
||||
|
||||
|
||||
|
||||
class GPTJRMLP(nn.Module):
|
||||
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
||||
super().__init__()
|
||||
embed_dim = config.n_embd
|
||||
|
||||
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
||||
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
||||
|
||||
self.act = ACT2FN[config.activation_function]
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
||||
hidden_states = self.fc_in(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.fc_out(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTJRBlock(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
||||
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
||||
self.attn = GPTJRAttention(config)
|
||||
self.mlp = GPTJRMLP(inner_dim, config)
|
||||
|
||||
# TODO: fix for n neighbors
|
||||
# for SBERT this is 384
|
||||
self.ln_2 = nn.LayerNorm(config.encoder_ndim, eps=config.layer_norm_epsilon)
|
||||
self.cross_attn = GPTJRCrossAttention(config)
|
||||
self.alpha = config.alpha
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: Optional[torch.FloatTensor],
|
||||
encoder_hidden_states: Optional[torch.FloatTensor],
|
||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
||||
# shape (bs, seq_len, hidden_dim)
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_1(hidden_states)
|
||||
attn_outputs = self.attn(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
||||
outputs = attn_outputs[1:]
|
||||
|
||||
feed_forward_hidden_states = self.mlp(hidden_states)
|
||||
self_attention_residual = attn_output + feed_forward_hidden_states + residual
|
||||
|
||||
# encoder_hidden_states (bs, knn, encoder_dim)
|
||||
encoder_normed = self.ln_2(encoder_hidden_states)
|
||||
# TODO: how do we handle neighbors
|
||||
|
||||
# TODO: we have to make sure we're doing masking right here
|
||||
# TODO: T5 passes query length to cross attention, do we need that?
|
||||
cross_attn_outputs = self.cross_attn(
|
||||
residual,
|
||||
encoder_hidden_states=encoder_normed,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
cross_attn_output = cross_attn_outputs[0] # output_attn: a, present, (attentions)
|
||||
cross_attn_outputs = cross_attn_outputs[1:]
|
||||
|
||||
hidden_states = self.alpha * cross_attn_output + (1 - self.alpha) * self_attention_residual
|
||||
|
||||
if use_cache:
|
||||
outputs = (hidden_states,) + outputs
|
||||
else:
|
||||
outputs = (hidden_states,) + outputs[1:]
|
||||
|
||||
return outputs # hidden_states, present, (attentions)
|
||||
|
||||
|
||||
class GPTJRPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = GPTJRConfig
|
||||
base_model_prefix = "transformer"
|
||||
is_parallelizable = True
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["GPTJRBlock"]
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, (nn.Linear,)):
|
||||
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, GPTJRModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
|
||||
class GPTJRModel(GPTJRPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embed_dim = config.n_embd
|
||||
self.vocab_size = config.vocab_size
|
||||
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
||||
self.drop = nn.Dropout(config.embd_pdrop)
|
||||
self.h = nn.ModuleList([GPTJRBlock(config) for _ in range(config.n_layer)])
|
||||
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
# Check validity of device_map
|
||||
self.device_map = (
|
||||
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
||||
)
|
||||
assert_device_map(self.device_map, len(self.h))
|
||||
self.model_parallel = True
|
||||
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
||||
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
||||
self.wte = self.wte.to(self.first_device)
|
||||
# Load onto devices
|
||||
for k, v in self.device_map.items():
|
||||
for block in v:
|
||||
cuda_device = "cuda:" + str(k)
|
||||
self.h[block] = self.h[block].to(cuda_device)
|
||||
# ln_f to last
|
||||
self.ln_f = self.ln_f.to(self.last_device)
|
||||
|
||||
def deparallelize(self):
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
self.first_device = "cpu"
|
||||
self.last_device = "cpu"
|
||||
self.wte = self.wte.to("cpu")
|
||||
for index in range(len(self.h)):
|
||||
self.h[index] = self.h[index].to("cpu")
|
||||
self.ln_f = self.ln_f.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.wte
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.wte = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||||
|
||||
if position_ids is not None:
|
||||
position_ids = position_ids.view(-1, input_shape[-1])
|
||||
|
||||
if past_key_values is None:
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
else:
|
||||
past_length = past_key_values[0][0].size(-2)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
||||
|
||||
# Attention mask.
|
||||
if attention_mask is not None:
|
||||
if batch_size <= 0:
|
||||
raise ValueError("batch_size has to be defined and > 0")
|
||||
attention_mask = attention_mask.view(batch_size, -1)
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
attention_mask = attention_mask[:, None, None, :]
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and the dtype's smallest value for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x num_attention_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.wte(input_ids)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if token_type_ids is not None:
|
||||
token_type_embeds = self.wte(token_type_ids)
|
||||
hidden_states = hidden_states + token_type_embeds
|
||||
|
||||
hidden_states = self.drop(hidden_states)
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
|
||||
# Model parallel
|
||||
if self.model_parallel:
|
||||
torch.cuda.set_device(hidden_states.device)
|
||||
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
||||
if layer_past is not None:
|
||||
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
||||
# Ensure that attention_mask is always on the same device as hidden_states
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
if isinstance(head_mask, torch.Tensor):
|
||||
head_mask = head_mask.to(hidden_states.device)
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warning(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
None,
|
||||
attention_mask,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# Model Parallel: If it's the last layer for that device, put things on the next device
|
||||
if self.model_parallel:
|
||||
for k, v in self.device_map.items():
|
||||
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
||||
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
||||
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
hidden_states = hidden_states.view(output_shape)
|
||||
# Add last hidden state
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
|
||||
class GPTJRForCausalLM(GPTJRPreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.transformer = GPTJRModel(config)
|
||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
||||
if config.encoder_path is not None:
|
||||
self.encoder = AutoModel.from_pretrained(config.encoder_path)
|
||||
# freeze encoder and don't get gradiets
|
||||
self.encoder.requires_grad_(False)
|
||||
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
self.device_map = (
|
||||
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
||||
if device_map is None
|
||||
else device_map
|
||||
)
|
||||
assert_device_map(self.device_map, len(self.transformer.h))
|
||||
self.transformer.parallelize(self.device_map)
|
||||
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
||||
self.model_parallel = True
|
||||
|
||||
def deparallelize(self):
|
||||
self.transformer.deparallelize()
|
||||
self.transformer = self.transformer.to("cpu")
|
||||
self.lm_head = self.lm_head.to("cpu")
|
||||
self.model_parallel = False
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None)
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
decoder_input_ids: Optional[torch.FloatTensor] = None,
|
||||
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# Encode if needed (training, first prediction pass)
|
||||
if encoder_outputs is None:
|
||||
# Convert encoder inputs in embeddings if needed
|
||||
encoder_outputs = self.encoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
head_mask=head_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
encoder_hidden_states=encoder_outputs[0],
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
# Set device for model parallelism
|
||||
if self.model_parallel:
|
||||
torch.cuda.set_device(self.transformer.first_device)
|
||||
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
||||
|
||||
# make sure sampling in fp16 works correctly and
|
||||
# compute loss in fp32 to match with mesh-tf version
|
||||
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
||||
# TODO: do we need to do conversion to fp32 if training in bf16?
|
||||
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
loss = loss.to(hidden_states.dtype)
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
||||
"""
|
||||
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
||||
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||||
beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||
for layer_past in past
|
||||
)
|
||||
|
41
test_gpt_jr.py
Normal file
41
test_gpt_jr.py
Normal file
@ -0,0 +1,41 @@
|
||||
import torch
|
||||
from gpt4all.models import GPTJRForCausalLM, GPTJRConfig
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
print("loading model")
|
||||
config = GPTJRConfig(encoder_ndim=384)
|
||||
model = GPTJRForCausalLM(config)
|
||||
print("loaded model")
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6b")
|
||||
|
||||
encoder_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
||||
encoder = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
||||
|
||||
|
||||
def mean_pooling(model_output, attention_mask):
|
||||
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||
|
||||
text = "The quick brown fox jumps over the lazy dog."
|
||||
print("Encoded knn")
|
||||
tokenized = encoder_tokenizer(text, return_tensors="pt")
|
||||
|
||||
encodings = mean_pooling(encoder(**tokenized), tokenized["attention_mask"])
|
||||
|
||||
# make 2 neighbors
|
||||
# (bs, knn, encoding_dim)
|
||||
encoder_outputs = torch.stack([encodings, encodings]).unsqueeze(0)
|
||||
|
||||
inputs = "What did the fox do?"
|
||||
|
||||
print("Encoded inputs")
|
||||
tokenized_input = tokenizer(inputs, padding="max_length", truncation="true", return_tensors="pt")
|
||||
|
||||
print("Running model")
|
||||
outputs = model(**tokenized_input, encoder_outputs=encoder_outputs)
|
||||
|
||||
print(outputs.shape)
|
||||
|
Loading…
Reference in New Issue
Block a user