implement local Nomic Embed via llama.cpp (#2086)

Signed-off-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
Jared Van Bortel
2024-03-13 18:09:24 -04:00
committed by GitHub
parent 171f4e488e
commit 406e88b59a
23 changed files with 799 additions and 1198 deletions

View File

@@ -97,11 +97,6 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
add_library(gptj-${BUILD_VARIANT} SHARED
gptj.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
prepare_target(gptj llama-mainline)
add_library(bert-${BUILD_VARIANT} SHARED
bert.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(bert-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(bert llama-mainline)
endif()
endforeach()

View File

@@ -1,910 +0,0 @@
#define BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "bert_impl.h"
#include "llmodel_shared.h"
#include "ggml.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <regex>
#include <thread>
#include <algorithm>
#include <numeric>
//#define DEBUG_BERT
namespace {
const char *modelType_ = "Bert";
}
typedef int32_t bert_vocab_id;
// default hparams (all-MiniLM-L6-v2)
struct bert_hparams
{
int32_t n_vocab = 30522;
int32_t n_max_tokens = 512;
int32_t n_embd = 256;
int32_t n_intermediate = 1536;
int32_t n_head = 12;
int32_t n_layer = 6;
};
struct bert_layer
{
// normalization
struct ggml_tensor *ln_att_w;
struct ggml_tensor *ln_att_b;
struct ggml_tensor *ln_out_w;
struct ggml_tensor *ln_out_b;
// attention
struct ggml_tensor *q_w;
struct ggml_tensor *q_b;
struct ggml_tensor *k_w;
struct ggml_tensor *k_b;
struct ggml_tensor *v_w;
struct ggml_tensor *v_b;
struct ggml_tensor *o_w;
struct ggml_tensor *o_b;
// ff
struct ggml_tensor *ff_i_w;
struct ggml_tensor *ff_i_b;
struct ggml_tensor *ff_o_w;
struct ggml_tensor *ff_o_b;
};
struct bert_vocab
{
std::map<std::string, bert_vocab_id> token_to_id;
std::map<std::string, bert_vocab_id> subword_token_to_id;
std::map<bert_vocab_id, std::string> _id_to_token;
std::map<bert_vocab_id, std::string> _id_to_subword_token;
};
struct bert_model
{
bert_hparams hparams;
// embeddings weights
struct ggml_tensor *word_embeddings;
struct ggml_tensor *token_type_embeddings;
struct ggml_tensor *position_embeddings;
struct ggml_tensor *ln_e_w;
struct ggml_tensor *ln_e_b;
std::vector<bert_layer> layers;
struct ggml_context *ctx;
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct bert_ctx
{
bert_model model;
bert_vocab vocab;
size_t mem_per_token;
int64_t mem_per_input;
int32_t max_batch_n;
llm_buffer buf_compute;
llm_buffer work_buf;
};
int32_t bert_n_embd(bert_ctx * ctx)
{
return ctx->model.hparams.n_embd;
}
int32_t bert_n_max_tokens(bert_ctx * ctx)
{
return ctx->model.hparams.n_max_tokens;
}
const char* bert_vocab_id_to_token(bert_ctx * ctx, bert_vocab_id id) {
bert_vocab & vocab = ctx->vocab;
auto it = vocab._id_to_token.find(id);
if (it != vocab._id_to_token.end())
{
return it->second.c_str();
}
it = vocab._id_to_subword_token.find(id);
if (it != vocab._id_to_subword_token.end())
{
return it->second.c_str();
}
return "[UNK TOKEN from bert_vocab]";
}
//
// Tokenizing
//
static size_t utf8_len(char src)
{
const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4};
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
std::string stripAccents(const std::string &inputString)
{
std::string resultString;
std::map<std::string, char> accentMap = {{"À", 'A'},{"Á", 'A'},
{"Â", 'A'},{"Ã", 'A'},{"Ä", 'A'},{"Å", 'A'},{"à", 'a'},{"á", 'a'},
{"â", 'a'},{"ã", 'a'},{"ä", 'a'},{"å", 'a'},{"È", 'E'},{"É", 'E'},
{"Ê", 'E'},{"Ë", 'E'},{"è", 'e'},{"é", 'e'},{"ê", 'e'},{"ë", 'e'},
{"Ì", 'I'},{"Í", 'I'},{"Î", 'I'},{"Ï", 'I'},{"ì", 'i'},{"í", 'i'},
{"î", 'i'},{"ï", 'i'},{"Ò", 'O'},{"Ó", 'O'},{"Ô", 'O'},{"Õ", 'O'},
{"Ö", 'O'},{"ò", 'o'},{"ó", 'o'},{"ô", 'o'},{"õ", 'o'},{"ö", 'o'},
{"Ù", 'U'},{"Ú", 'U'},{"Û", 'U'},{"Ü", 'U'},{"ù", 'u'},{"ú", 'u'},
{"û", 'u'},{"ü", 'u'},{"Ý", 'Y'},{"ý", 'y'},{"Ç", 'C'},{"ç", 'c'},
{"Ñ", 'N'},{"ñ", 'n'},
};
for (size_t i = 0; i < inputString.length();)
{
int len = utf8_len(inputString[i]);
std::string curChar = inputString.substr(i, len);
auto iter = accentMap.find(curChar);
if (iter != accentMap.end())
{
resultString += iter->second;
}
else
{
resultString += curChar;
}
i += len;
}
return resultString;
}
std::string bert_normalize_prompt(const std::string &text)
{
// TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98
std::string text2 = stripAccents(text);
for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i]))
{
char c = text2[i];
if (c >= 'A' && c <= 'Z')
text2[i] = c - 'A' + 'a';
}
return text2;
}
std::vector<bert_vocab_id> bert_tokenize(
struct bert_ctx * ctx,
const char * text)
{
const bert_vocab &vocab = ctx->vocab;
std::string str = text;
std::vector<std::string> words;
// first split the text into words
{
str = bert_normalize_prompt(str);
std::string pat = R"([[:punct:]]|[[:alpha:]]+|[[:digit:]]+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re))
{
for (std::string x : m)
{
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<bert_vocab_id> tokens;
int cls_tok_id = 101;
tokens.push_back(cls_tok_id);
for (const auto &word : words)
{
if (word.size() == 0)
continue;
int i = 0;
int n = word.size();
auto *token_map = &vocab.token_to_id;
while (i < n)
{
int j = n;
while (j > i)
{
auto it = token_map->find(word.substr(i, j - i));
if (it != token_map->end())
{
tokens.push_back(it->second);
i = j;
token_map = &vocab.subword_token_to_id;
}
--j;
}
if (j == i)
{
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
token_map = &vocab.subword_token_to_id;
++i;
}
}
}
return tokens;
}
void bert_resize_ctx(bert_ctx * ctx, int32_t new_size) {
int64_t buf_size_new = ctx->mem_per_input * new_size;
// TODO: Max memory should be a param? Now just 1 GB
int64_t GB = 1 << 30;
#if defined(DEBUG_BERT)
printf("%s: requested_buf_size %lldMB\n", __func__, buf_size_new / (1 << 20));
#endif
if (buf_size_new > GB) {
int32_t adjusted_new_size = GB / ctx->mem_per_input;
if (adjusted_new_size < 1) adjusted_new_size = 1;
#if defined(DEBUG_BERT)
printf("%s: requested batch size %d, actual new batch size %d\n", __func__, new_size, adjusted_new_size);
#endif
new_size = adjusted_new_size;
buf_size_new = ctx->mem_per_input * new_size;
}
if (new_size > ctx->max_batch_n) {
ctx->buf_compute.resize(buf_size_new);
ctx->max_batch_n = new_size;
}
}
void bert_eval(
struct bert_ctx *ctx,
int32_t n_threads,
const bert_vocab_id *raw_tokens,
int32_t n_tokens,
float *embeddings)
{
const bert_model& model = ctx->model;
bool mem_req_mode = !embeddings;
// batch_embeddings is nullptr for the initial memory requirements run
if (!mem_req_mode && 1 > ctx->max_batch_n)
bert_resize_ctx(ctx, 1);
const int N = n_tokens;
const auto &tokens = raw_tokens;
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_max_tokens = hparams.n_max_tokens;
const int n_head = hparams.n_head;
const int d_head = n_embd / n_head;
std::vector<float> result;
if (N > n_max_tokens)
{
fprintf(stderr, "Too many tokens, maximum is %d\n", n_max_tokens);
return;
}
auto & mem_per_token = ctx->mem_per_token;
auto & buf_compute = ctx->buf_compute;
struct ggml_init_params params = {
.mem_size = buf_compute.size,
.mem_buffer = buf_compute.addr,
.no_alloc = false,
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph *gf = ggml_new_graph(ctx0);
// Embeddings. word_embeddings + token_type_embeddings + position_embeddings
struct ggml_tensor *token_layer = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(token_layer->data, tokens, N * ggml_element_size(token_layer));
struct ggml_tensor *token_types = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
ggml_set_zero(token_types);
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; i++)
{
ggml_set_i32_1d(positions, i, i);
}
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.word_embeddings, token_layer);
inpL = ggml_add(ctx0,
ggml_get_rows(ctx0, model.token_type_embeddings, token_types),
inpL);
inpL = ggml_add(ctx0,
ggml_get_rows(ctx0, model.position_embeddings, positions),
inpL);
// embd norm
{
inpL = ggml_norm(ctx0, inpL, 1e-12f);
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_e_w, inpL),
inpL),
ggml_repeat(ctx0, model.ln_e_b, inpL));
}
// layers
for (int il = 0; il < n_layer; il++)
{
struct ggml_tensor *cur = inpL;
// self-attention
{
struct ggml_tensor *Qcur = cur;
Qcur = ggml_reshape_3d(ctx0,
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, Qcur),
ggml_mul_mat(ctx0, model.layers[il].q_w, Qcur)),
d_head, n_head, N);
struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
struct ggml_tensor *Kcur = cur;
Kcur = ggml_reshape_3d(ctx0,
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, Kcur),
ggml_mul_mat(ctx0, model.layers[il].k_w, Kcur)),
d_head, n_head, N);
struct ggml_tensor *K = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
struct ggml_tensor *Vcur = cur;
Vcur = ggml_reshape_3d(ctx0,
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, Vcur),
ggml_mul_mat(ctx0, model.layers[il].v_w, Vcur)),
d_head, n_head, N);
struct ggml_tensor *V = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
// KQ = soft_max(KQ / sqrt(head width))
KQ = ggml_soft_max(
ctx0, ggml_scale(ctx0, KQ, 1.0f / sqrt((float)d_head))
);
V = ggml_cont(ctx0, ggml_transpose(ctx0, V));
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cpy(ctx0,
KQV,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
}
// attention output
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].o_b, cur),
ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
// attention norm
{
cur = ggml_norm(ctx0, cur, 1e-12f);
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_att_w, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_att_b, cur));
}
struct ggml_tensor *att_output = cur;
// intermediate_output = self.intermediate(attention_output)
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].ff_i_b, cur),
cur);
cur = ggml_gelu(ctx0, cur);
// layer_output = self.output(intermediate_output, attention_output)
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].ff_o_b, cur),
cur);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, att_output, cur);
// output norm
{
cur = ggml_norm(ctx0, cur, 1e-12f);
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_out_w, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_out_b, cur));
}
inpL = cur;
}
inpL = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
// pooler
struct ggml_tensor *sum = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, 1);
ggml_set_f32(sum, 1.0f / N);
inpL = ggml_mul_mat(ctx0, inpL, sum);
ggml_tensor *output = inpL;
// run the computation
ggml_build_forward_expand(gf, output);
//ggml_graph_compute_g4a()
ggml_graph_compute_g4a(ctx->work_buf, gf, n_threads);
//ggml_graph_compute(ctx0, gf);
// float *dat = ggml_get_data_f32(output);
// pretty_print_tensor(dat, output->ne, output->nb, output->n_dims - 1, "");
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(gf);
#endif
if (!mem_req_mode) {
memcpy(embeddings, (float *)ggml_get_data(output), sizeof(float) * n_embd);
} else {
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu KB \n", ggml_used_mem(ctx0) / 1024);
// printf("mem_per_token = %zu KB \n", mem_per_token / 1024);
ggml_free(ctx0);
}
//
// Loading and setup
//
void bert_free(bert_ctx * ctx) {
delete ctx;
}
struct bert_ctx * bert_load_from_file(const char *fname)
{
#if defined(DEBUG_BERT)
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname);
#endif
bert_ctx * new_bert = new bert_ctx;
bert_model & model = new_bert->model;
bert_vocab & vocab = new_bert->vocab;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &model.ctx,
};
gguf_context *ggufctx = gguf_init_from_file(fname, params);
if (!ggufctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
return nullptr;
}
printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
// print some standard metadata
{
int keyidx;
keyidx = gguf_find_key(ggufctx, "general.name");
if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.description");
if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.author");
if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.license");
if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.file_type");
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
}
// check required metadata
{
// check model architecture kv
int keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx == -1) {
fprintf(stderr, "%s: gguf model architecture not found!\n", __func__);
return nullptr;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
fprintf(stderr, "%s: model architecture not supported!\n", __func__);
return nullptr;
}
}
// load hparams
{
auto &hparams = model.hparams;
bool ok = false;
int keyidx;
do {
keyidx = gguf_find_key(ggufctx, "bert.context_length");
if (keyidx == -1) { break; }
hparams.n_max_tokens = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.embedding_length");
if (keyidx == -1) { break; }
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.feed_forward_length");
if (keyidx == -1) { break; }
hparams.n_intermediate = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.attention.head_count");
if (keyidx == -1) { break; }
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.block_count");
if (keyidx == -1) { break; }
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
ok = true;
} while (false);
if (!ok) {
fprintf(stderr, "%s: required hparam missing!\n", __func__);
return nullptr;
}
#if defined(DEBUG_BERT)
printf("%s: n_max_tokens = %d\n", __func__, hparams.n_max_tokens);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
#endif
}
// load vocab
{
auto & hparams = model.hparams;
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
if (keyidx == -1) {
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
return nullptr;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
return nullptr;
}
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
if (tokens_keyidx == -1) {
fprintf(stderr, "%s: bert tokenizer vocab not found!\n", __func__);
return nullptr;
}
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
printf("%s: bert tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
for (int i = 0; i < hparams.n_vocab; i++) {
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
if (word[0] == '#' && word[1] == '#')
{
vocab.subword_token_to_id[word.substr(2)] = i;
vocab._id_to_subword_token[i] = word;
}
if (vocab.token_to_id.count(word) == 0)
{
vocab.token_to_id[word] = i;
vocab._id_to_token[i] = word;
}
}
}
auto &ctx = model.ctx;
#if defined(DEBUG_BERT)
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ggml_get_mem_size(ctx) / (1024.0 * 1024.0));
#endif
// prepare memory for the weights
{
const int n_layer = model.hparams.n_layer;
model.layers.resize(n_layer);
model.word_embeddings = ggml_get_tensor(ctx, "token_embd.weight");
model.token_type_embeddings = ggml_get_tensor(ctx, "token_types.weight");
model.position_embeddings = ggml_get_tensor(ctx, "position_embd.weight");
model.ln_e_w = ggml_get_tensor(ctx, "output_norm.weight");
model.ln_e_b = ggml_get_tensor(ctx, "output_norm.bias");
auto name = [](int i, std::string n) {
static std::string key;
key = "blk." + std::to_string(i) + "." + n;
return key.c_str();
};
for (int i = 0; i < n_layer; ++i)
{
auto &layer = model.layers[i];
layer.ln_att_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
layer.ln_att_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias"));
layer.ln_out_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight"));
layer.ln_out_b = ggml_get_tensor(ctx, name(i, "ffn_norm.bias"));
layer.q_w = ggml_get_tensor(ctx, name(i, "attn_q.weight"));
layer.q_b = ggml_get_tensor(ctx, name(i, "attn_q.bias"));
layer.k_w = ggml_get_tensor(ctx, name(i, "attn_k.weight"));
layer.k_b = ggml_get_tensor(ctx, name(i, "attn_k.bias"));
layer.v_w = ggml_get_tensor(ctx, name(i, "attn_v.weight"));
layer.v_b = ggml_get_tensor(ctx, name(i, "attn_v.bias"));
layer.o_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
layer.o_b = ggml_get_tensor(ctx, name(i, "attn_output.bias"));
layer.ff_i_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
layer.ff_i_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias"));
layer.ff_o_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
layer.ff_o_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias"));
}
}
// Calculate space requirements for setting up context buffers later
{
bert_vocab_id tokens[] = {0, 1, 2, 3};
// TODO: We set the initial buffer size to 16MB and hope it's enough. Maybe there is a better way to do this?
new_bert->buf_compute.resize(16 * 1024 * 1024);
bert_eval(new_bert, 1, tokens, 4, nullptr);
new_bert->max_batch_n = 0;
// TODO: Max tokens should be a param?
int32_t N = new_bert->model.hparams.n_max_tokens;
new_bert->mem_per_input = 2.2 * (new_bert->mem_per_token * N); // add 10% to account for ggml object overhead
}
#if defined(DEBUG_BERT)
printf("%s: mem_per_token %ld KB, mem_per_input %ld MB\n", __func__, new_bert->mem_per_token / (1 << 10), new_bert->mem_per_input / (1 << 20));
#endif
return new_bert;
}
struct BertPrivate {
const std::string modelPath;
bool modelLoaded;
bert_ctx *ctx = nullptr;
int64_t n_threads = 0;
};
Bert::Bert() : d_ptr(new BertPrivate) {
d_ptr->modelLoaded = false;
}
Bert::~Bert() {
bert_free(d_ptr->ctx);
}
bool Bert::loadModel(const std::string &modelPath, int n_ctx, int ngl)
{
(void)n_ctx;
(void)ngl;
d_ptr->modelLoaded = false;
auto * ctx = bert_load_from_file(modelPath.c_str());
fflush(stdout);
if (!ctx)
return false;
d_ptr->ctx = ctx;
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
return true;
}
bool Bert::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t Bert::requiredMem(const std::string &modelPath, int n_ctx, int ngl)
{
(void)modelPath;
(void)n_ctx;
(void)ngl;
return 0;
}
size_t Bert::stateSize() const
{
return 0;
}
size_t Bert::saveState(uint8_t */*dest*/) const
{
return 0;
}
size_t Bert::restoreState(const uint8_t */*src*/)
{
return 0;
}
void Bert::setThreadCount(int32_t n_threads)
{
d_ptr->n_threads = n_threads;
}
int32_t Bert::threadCount() const
{
return d_ptr->n_threads;
}
std::vector<float> Bert::embedding(const std::string &text)
{
const int overlap = 32;
const LLModel::Token clsToken = 101;
const size_t contextLength = bert_n_max_tokens(d_ptr->ctx);
typedef std::vector<LLModel::Token> TokenString;
TokenString tokens = ::bert_tokenize(d_ptr->ctx, text.c_str());
#if defined(DEBUG_BERT)
std::cerr << "embedding: " << tokens.size()
<< " contextLength " << contextLength
<< "\n";
#endif
std::vector<double> embeddingsSum(bert_n_embd(d_ptr->ctx), 0);
int embeddingsSumTotal = 0;
size_t start_pos = 0;
bool isFirstChunk = true;
while (start_pos < tokens.size()) {
TokenString chunk;
if (!isFirstChunk)
chunk.push_back(clsToken);
const size_t l = isFirstChunk ? contextLength : contextLength - 1;
if (tokens.size() - start_pos > l) {
chunk.insert(chunk.end(), tokens.begin() + start_pos, tokens.begin() + start_pos + l);
start_pos = start_pos + contextLength - overlap;
} else {
chunk.insert(chunk.end(), tokens.begin() + start_pos, tokens.end());
start_pos = tokens.size();
}
#if defined(DEBUG_BERT)
std::cerr << "chunk length: " << chunk.size()
<< " embeddingsSumTotal " << embeddingsSumTotal
<< " contextLength " << contextLength
<< " start_pos " << start_pos
<< "\n";
#endif
embeddingsSumTotal++;
std::vector<float> embeddings(bert_n_embd(d_ptr->ctx));
bert_eval(d_ptr->ctx, d_ptr->n_threads, chunk.data(), chunk.size(), embeddings.data());
std::transform(embeddingsSum.begin(), embeddingsSum.end(), embeddings.begin(), embeddingsSum.begin(), std::plus<float>());
isFirstChunk = false;
}
std::transform(embeddingsSum.begin(), embeddingsSum.end(), embeddingsSum.begin(), [embeddingsSumTotal](float num){ return num / embeddingsSumTotal; });
double magnitude = std::sqrt(std::inner_product(embeddingsSum.begin(), embeddingsSum.end(), embeddingsSum.begin(), 0.0));
for (auto &value : embeddingsSum)
value /= magnitude;
std::vector<float> finalEmbeddings(embeddingsSum.begin(), embeddingsSum.end());
return finalEmbeddings;
}
std::vector<LLModel::Token> Bert::tokenize(PromptContext &ctx, const std::string &str, bool special) const
{
(void)ctx;
(void)special;
return ::bert_tokenize(d_ptr->ctx, str.c_str());
}
LLModel::Token Bert::sampleToken(PromptContext &/*promptCtx*/) const
{
return 999 /*!*/;
}
std::string Bert::tokenToString(Token id) const
{
return bert_vocab_id_to_token(d_ptr->ctx, id);
}
bool Bert::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
std::vector<float> embeddings(bert_n_embd(d_ptr->ctx));
int32_t cls = 101;
const bool useCLS = tokens.front() != cls;
if (useCLS) {
std::vector<int32_t> myTokens;
myTokens.push_back(cls);
myTokens.insert(myTokens.end(), tokens.begin(), tokens.end());
bert_eval(d_ptr->ctx, d_ptr->n_threads, myTokens.data(), myTokens.size(), embeddings.data());
} else
bert_eval(d_ptr->ctx, d_ptr->n_threads, tokens.data(), tokens.size(), embeddings.data());
ctx.n_past = 0; // bert does not store any context
return true;
}
int32_t Bert::contextLength() const
{
return bert_n_max_tokens(d_ptr->ctx);
}
const std::vector<LLModel::Token> &Bert::endTokens() const
{
static const std::vector<LLModel::Token> out = { 102 /*sep*/};
return out;
}
std::string get_arch_name(gguf_context *ctx_gguf) {
std::string arch_name;
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != GGUF_TYPE_STRING) {
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
}
return gguf_get_val_str(ctx_gguf, kid);
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(const char * fname) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
if (!ctx_gguf)
return false;
bool isValid = gguf_get_version(ctx_gguf) <= 3;
isValid = isValid && get_arch_name(ctx_gguf) == "bert";
gguf_free(ctx_gguf);
return isValid;
}
DLL_EXPORT LLModel *construct() {
return new Bert;
}
}

View File

@@ -1,45 +0,0 @@
#ifndef BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of bert.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef BERT_H
#define BERT_H
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include "llmodel.h"
struct BertPrivate;
class Bert : public LLModel {
public:
Bert();
~Bert();
bool supportsEmbedding() const override { return true; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath, int n_ctx, int ngl) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
std::vector<float> embedding(const std::string &text) override;
private:
std::unique_ptr<BertPrivate> d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token id) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override { return true; }
};
#endif // BERT_H

View File

@@ -6,6 +6,7 @@
#include <cstdio>
#include <cstring>
#include <fstream>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <map>
@@ -30,6 +31,19 @@ static constexpr int GGUF_VER_MAX = 3;
static const char * const modelType_ = "LLaMA";
static const std::vector<const char *> KNOWN_ARCHES {
"baichuan", "bert", "bloom", "codeshell", "falcon", "gemma", "gpt2", "llama", "mpt", "nomic-bert", "orion",
"persimmon", "phi2", "plamo", "qwen", "qwen2", "refact", "stablelm", "starcoder"
};
static const std::vector<const char *> EMBEDDING_ARCHES {
"bert", "nomic-bert"
};
static bool is_embedding_arch(const std::string &arch) {
return std::find(EMBEDDING_ARCHES.begin(), EMBEDDING_ARCHES.end(), arch) < EMBEDDING_ARCHES.end();
}
static bool llama_verbose() {
const char* var = getenv("GPT4ALL_VERBOSE_LLAMACPP");
return var && *var;
@@ -124,7 +138,7 @@ static int32_t get_arch_key_u32(std::string const &modelPath, std::string const
auto * ctx = load_gguf(modelPath.c_str());
if (!ctx)
return -1;
auto arch = get_arch_name(ctx);
std::string arch = get_arch_name(ctx);
int32_t value = -1;
if (ctx) {
@@ -193,7 +207,7 @@ size_t LLamaModel::requiredMem(const std::string &modelPath, int n_ctx, int ngl)
return filesize + est_kvcache_size;
}
bool LLamaModel::isModelBlacklisted(const std::string &modelPath) {
bool LLamaModel::isModelBlacklisted(const std::string &modelPath) const {
auto * ctx = load_gguf(modelPath.c_str());
if (!ctx) {
std::cerr << __func__ << ": failed to load " << modelPath << "\n";
@@ -229,6 +243,18 @@ bool LLamaModel::isModelBlacklisted(const std::string &modelPath) {
return res;
}
bool LLamaModel::isEmbeddingModel(const std::string &modelPath) const {
auto *ctx_gguf = load_gguf(modelPath.c_str());
if (!ctx_gguf) {
std::cerr << __func__ << ": failed to load GGUF from " << modelPath << "\n";
return false;
}
std::string arch = get_arch_name(ctx_gguf);
gguf_free(ctx_gguf);
return is_embedding_arch(arch);
}
bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
{
d_ptr->modelLoaded = false;
@@ -287,20 +313,25 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
if (!d_ptr->model) {
fflush(stdout);
d_ptr->device = -1;
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
const int n_ctx_train = llama_n_ctx_train(d_ptr->model);
if (n_ctx > n_ctx_train) {
std::cerr << "warning: model was trained on only " << n_ctx_train << " context tokens ("
<< n_ctx << " specified)\n";
}
// -- initialize the context --
d_ptr->ctx_params = llama_context_default_params();
bool isEmbedding = is_embedding_arch(llama_model_arch(d_ptr->model));
const int n_ctx_train = llama_n_ctx_train(d_ptr->model);
if (isEmbedding) {
d_ptr->ctx_params.n_batch = n_ctx_train;
} else {
if (n_ctx > n_ctx_train) {
std::cerr << "warning: model was trained on only " << n_ctx_train << " context tokens ("
<< n_ctx << " specified)\n";
}
}
d_ptr->ctx_params.n_ctx = n_ctx;
d_ptr->ctx_params.seed = params.seed;
d_ptr->ctx_params.type_k = params.kv_type;
@@ -314,6 +345,9 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
d_ptr->ctx_params.n_threads = d_ptr->n_threads;
d_ptr->ctx_params.n_threads_batch = d_ptr->n_threads;
if (m_supportsEmbedding)
d_ptr->ctx_params.embeddings = true;
d_ptr->ctx = llama_new_context_with_model(d_ptr->model, d_ptr->ctx_params);
if (!d_ptr->ctx) {
fflush(stdout);
@@ -332,6 +366,9 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
}
#endif
m_supportsEmbedding = isEmbedding;
m_supportsCompletion = !isEmbedding;
fflush(stdout);
d_ptr->modelLoaded = true;
return true;
@@ -535,6 +572,320 @@ bool LLamaModel::usingGPUDevice()
#endif
}
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
}
batch.logits [batch.n_tokens] = logits;
batch.n_tokens++;
}
static void batch_add_seq(llama_batch &batch, const std::vector<LLModel::Token> &tokens, int seq_id) {
for (unsigned i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
}
}
size_t LLamaModel::embeddingSize() const {
return llama_n_embd(d_ptr->model);
}
struct EmbModelSpec {
const char *docPrefix;
const char *queryPrefix;
std::vector<const char *> otherPrefixes = {};
bool matryoshkaCapable = false;
const char *recommendedDims = nullptr;
};
struct EmbModelGroup {
EmbModelSpec spec;
std::vector<const char *> names;
};
static const EmbModelSpec NOPREFIX_SPEC {nullptr, nullptr};
static const EmbModelSpec NOMIC_SPEC {"search_document", "search_query", {"clustering", "classification"}};
static const EmbModelSpec E5_SPEC {"passage", "query"};
static const EmbModelSpec NOMIC_1_5_SPEC {
"search_document", "search_query", {"clustering", "classification"}, true, "[768, 512, 384, 256, 128]"
};
static const EmbModelSpec LLM_EMBEDDER_SPEC {
"Represent this document for retrieval",
"Represent this query for retrieving relevant documents",
};
static const EmbModelSpec BGE_SPEC {
nullptr, "Represent this sentence for searching relevant passages",
};
static const EmbModelSpec E5_MISTRAL_SPEC {
nullptr, "Instruct: Given a query, retrieve relevant passages that answer the query\nQuery",
};
static const EmbModelGroup EMBEDDING_MODEL_SPECS[] {
{NOPREFIX_SPEC, {"all-MiniLM-L6-v1", "all-MiniLM-L12-v1", "all-MiniLM-L6-v2", "all-MiniLM-L12-v2"}},
{NOMIC_SPEC, {"nomic-embed-text-v1", "nomic-embed-text-v1-ablated", "nomic-embed-text-v1-unsupervised"}},
{NOMIC_1_5_SPEC, {"nomic-embed-text-v1.5"}},
{LLM_EMBEDDER_SPEC, {"llm-embedder"}},
{BGE_SPEC, {"bge-small-en", "bge-base-en", "bge-large-en",
"bge-small-en-v1.5", "bge-base-en-v1.5", "bge-large-en-v1.5"}},
{E5_SPEC, {"e5-small", "e5-base", "e5-large",
"e5-small-unsupervised", "e5-base-unsupervised", "e5-large-unsupervised",
"e5-small-v2", "e5-base-v2", "e5-large-v2"}},
{E5_MISTRAL_SPEC, {"e5-mistral-7b-instruct",
"multilingual-e5-small", "multilingual-e5-base", "multilingual-e5-large",
"multilingual-e5-large-instruct"}},
};
static const EmbModelSpec *getEmbedSpec(const std::string &modelName) {
static const auto &specs = EMBEDDING_MODEL_SPECS;
auto it = std::find_if(specs, std::end(specs),
[&modelName](auto &spec) {
auto &names = spec.names;
return std::find(names.begin(), names.end(), modelName) < names.end();
}
);
return it < std::end(specs) ? &it->spec : nullptr;
}
void LLamaModel::embed(
const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality, bool doMean,
bool atlas
) {
const EmbModelSpec *spec;
std::optional<std::string> prefix;
if (d_ptr->model && (spec = getEmbedSpec(llama_model_name(d_ptr->model))))
prefix = isRetrieval ? spec->queryPrefix : spec->docPrefix;
embed(texts, embeddings, prefix, dimensionality, doMean, atlas);
}
void LLamaModel::embed(
const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix, int dimensionality,
bool doMean, bool atlas
) {
if (!d_ptr->model)
throw std::logic_error("no model is loaded");
const char *modelName = llama_model_name(d_ptr->model);
if (!m_supportsEmbedding)
throw std::logic_error("not an embedding model: "s + modelName);
auto *spec = getEmbedSpec(modelName);
if (!spec)
std::cerr << __func__ << ": warning: unknown model " << modelName << "\n";
const int32_t n_embd = llama_n_embd(d_ptr->model);
if (dimensionality < 0) {
dimensionality = n_embd;
} else if (spec && dimensionality != n_embd) {
auto msg = [dimensionality, modelName]() {
return "unsupported dimensionality " + std::to_string(dimensionality) + " for model " + modelName;
};
if (!spec->matryoshkaCapable)
throw std::logic_error(msg() + " (supported: " + std::to_string(n_embd) + ")");
if (dimensionality == 0 || dimensionality > n_embd)
throw std::logic_error(msg() + " (recommended: " + spec->recommendedDims + ")");
}
if (!prefix) {
if (spec) {
prefix = spec->docPrefix;
} else {
std::cerr << __func__ << ": warning: assuming no prefix\n";
prefix = "";
}
} else if (spec && prefix != spec->docPrefix && prefix != spec->queryPrefix &&
std::find(spec->otherPrefixes.begin(), spec->otherPrefixes.end(), *prefix) == spec->otherPrefixes.end())
{
std::stringstream ss;
ss << std::quoted(*prefix) << " is not a valid task type for model " << modelName;
throw std::logic_error(ss.str());
}
embedInternal(texts, embeddings, *prefix, dimensionality, doMean, atlas, spec);
}
// MD5 hash of "nomic empty"
static const char EMPTY_PLACEHOLDER[] = "24df574ea1c998de59d5be15e769658e";
auto product(double a) -> std::function<double(double)> {
return [a](double b) { return a * b; };
}
template <typename T>
double getL2NormScale(T *start, T *end) {
double magnitude = std::sqrt(std::inner_product(start, end, start, 0.0));
return 1.0 / std::max(magnitude, 1e-12);
}
void LLamaModel::embedInternal(
const std::vector<std::string> &texts, float *embeddings, std::string prefix, int dimensionality,
bool doMean, bool atlas, const EmbModelSpec *spec
) {
typedef std::vector<LLModel::Token> TokenString;
static constexpr int32_t atlasMaxLength = 8192;
static constexpr int chunkOverlap = 8; // Atlas overlaps n_batch-sized chunks of input by 8 tokens
const llama_token bos_token = llama_token_bos(d_ptr->model);
const llama_token eos_token = llama_token_eos(d_ptr->model);
assert(shouldAddBOS());
bool addEOS = llama_vocab_type(d_ptr->model) == LLAMA_VOCAB_TYPE_WPM;
// no EOS, optional BOS
auto tokenize = [this, addEOS](std::string text, TokenString &tokens, bool addBOS) {
if (!text.empty() && text[0] != ' ')
text = ' ' + text; // normalize for SPM - our fork of llama.cpp doesn't add a space prefix
tokens.resize(text.length()+4);
int32_t n_tokens = llama_tokenize(d_ptr->model, text.c_str(), text.length(), tokens.data(), tokens.size(), addBOS, false);
assert(addEOS == (eos_token != -1 && tokens[n_tokens - 1] == eos_token));
tokens.resize(n_tokens - addEOS); // erase EOS/SEP
};
// tokenize the texts
std::vector<TokenString> inputs;
for (unsigned i = 0; i < texts.size(); i++) {
auto &text = texts[i];
auto &inp = inputs.emplace_back();
tokenize(text, inp, false);
if (atlas && inp.size() > atlasMaxLength) {
if (doMean) {
throw std::logic_error(
"length of text at index " + std::to_string(i) + " is " + std::to_string(inp.size()) +
" tokens which exceeds limit of " + std::to_string(atlasMaxLength)
);
}
inp.resize(atlasMaxLength);
} else if (inp.empty()) {
if (!atlas || !text.empty()) {
std::cerr << __func__ << ": warning: chunking tokenized text at index " << std::to_string(i)
<< " into zero tokens\n";
}
tokenize(EMPTY_PLACEHOLDER, inp, false);
}
}
// tokenize the prefix
TokenString prefixTokens;
if (prefix.empty()) {
prefixTokens.push_back(bos_token);
} else {
tokenize(prefix + ':', prefixTokens, true);
}
const uint32_t n_batch = llama_n_batch(d_ptr->ctx);
const uint32_t max_len = n_batch - (prefixTokens.size() + addEOS); // minus BOS/CLS and EOS/SEP
if (chunkOverlap >= max_len) {
throw std::logic_error("max chunk length of " + std::to_string(max_len) + " is smaller than overlap of " +
std::to_string(chunkOverlap) + " tokens");
}
// split into max_len-sized chunks
struct split_batch { int idx; TokenString batch; };
std::vector<split_batch> batches;
for (unsigned i = 0; i < inputs.size(); i++) {
auto &input = inputs[i];
for (auto it = input.begin(); it < input.end(); it += max_len) {
if (it > input.begin()) { it -= chunkOverlap; }
auto end = std::min(it + max_len, input.end());
auto &batch = batches.emplace_back(i, prefixTokens).batch;
batch.insert(batch.end(), it, end);
batch.push_back(eos_token);
if (!doMean) { break; /* limit text to one chunk */ }
}
}
inputs.clear();
// initialize batch
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// n_texts x n_embd matrix
const int32_t n_embd = llama_n_embd(d_ptr->model);
std::vector<double> embeddingsSum(texts.size() * n_embd);
std::vector<int> embeddingsSumTotal(texts.size());
std::vector<int> queued_indices; // text indices of batches to be processed
auto decode = [this, &queued_indices, n_embd, &batch, &embeddingsSum, &embeddingsSumTotal, spec, dimensionality]() {
if (llama_decode(d_ptr->ctx, batch) < 0)
throw std::runtime_error("llama_decode failed");
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i]) { continue; }
int i_prompt = queued_indices[batch.seq_id[i][0]];
auto *out = &embeddingsSum[i_prompt * n_embd];
// sequence embeddings aren't available when pooling_type is NONE
auto *embd = llama_get_embeddings_seq(d_ptr->ctx, batch.seq_id[i][0]);
if (!embd) { embd = llama_get_embeddings_ith(d_ptr->ctx, i); }
assert(embd);
auto *embd_end = embd + n_embd;
// layer normalization for nomic-embed-text-v1.5
if (spec && spec->matryoshkaCapable) {
// normalize mean
double mean = std::accumulate(embd, embd_end, 0.0) / n_embd;
std::transform(embd, embd_end, embd, [mean](double f){ return f - mean; });
// unbiased sample variance, with Bessel's correction
double variance = std::inner_product(embd, embd_end, embd, 0.0) / (n_embd - 1);
// trim to matryoshka dim
embd_end = embd + dimensionality;
// normalize variance
std::transform(embd, embd_end, embd, product(1.0 / std::sqrt(variance + 1e-5)));
}
// L2 norm
auto scale = getL2NormScale(embd, embd_end);
std::transform(embd, embd_end, out, out, [scale](double e, double o){ return o + scale * e; });
embeddingsSumTotal[i_prompt]++;
}
};
// break into batches
for (auto &inp: batches) {
// encode if at capacity
if (batch.n_tokens + inp.batch.size() > n_batch) {
decode();
batch.n_tokens = 0;
queued_indices.clear();
}
// add to batch
batch_add_seq(batch, inp.batch, queued_indices.size());
queued_indices.push_back(inp.idx);
}
// final batch
decode();
for (unsigned i = 0; i < texts.size(); i++) {
auto *embd = &embeddingsSum[i * n_embd];
auto *embd_end = embd + dimensionality;
int total = embeddingsSumTotal[i];
// average over chunks
std::transform(embd, embd_end, embd, product(1.0 / total));
// L2 norm and copy
auto scale = getL2NormScale(embd, embd_end);
std::transform(embd, embd_end, embeddings, product(scale));
embeddings += dimensionality;
}
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
@@ -556,23 +907,21 @@ DLL_EXPORT const char *get_build_variant() {
DLL_EXPORT bool magic_match(const char *fname) {
auto * ctx = load_gguf(fname);
auto arch = get_arch_name(ctx);
std::string arch = get_arch_name(ctx);
bool valid = true;
static const std::vector<const char *> known_arches {
"baichuan", "bloom", "codeshell", "falcon", "gemma", "gpt2", "llama", "mpt", "orion", "persimmon", "phi2",
"plamo", "qwen", "qwen2", "refact", "stablelm", "starcoder"
};
if (std::find(known_arches.begin(), known_arches.end(), arch) == known_arches.end()) {
if (std::find(KNOWN_ARCHES.begin(), KNOWN_ARCHES.end(), arch) == KNOWN_ARCHES.end()) {
// not supported by this version of llama.cpp
if (!(arch == "gptj" || arch == "bert")) { // we support these via other modules
if (arch != "gptj") { // we support this via another module
std::cerr << __func__ << ": unsupported model architecture: " << arch << "\n";
}
valid = false;
}
if (valid && is_embedding_arch(arch) && gguf_find_key(ctx, (arch + ".pooling_type").c_str()) < 0)
valid = false; // old pre-llama.cpp embedding model, e.g. all-MiniLM-L6-v2-f16.gguf
gguf_free(ctx);
return valid;
}

View File

@@ -11,15 +11,18 @@
#include "llmodel.h"
struct LLamaPrivate;
struct EmbModelSpec;
class LLamaModel : public LLModel {
public:
LLamaModel();
~LLamaModel();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool supportsEmbedding() const override { return m_supportsEmbedding; }
bool supportsCompletion() const override { return m_supportsCompletion; }
bool loadModel(const std::string &modelPath, int n_ctx, int ngl) override;
bool isModelBlacklisted(const std::string &modelPath) override;
bool isModelBlacklisted(const std::string &modelPath) const override;
bool isEmbeddingModel(const std::string &modelPath) const override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
size_t stateSize() const override;
@@ -29,12 +32,22 @@ public:
int32_t threadCount() const override;
std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired) const override;
bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const override;
bool initializeGPUDevice(int device, std::string *unavail_reason) const override;
bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const override;
bool hasGPUDevice() override;
bool usingGPUDevice() override;
size_t embeddingSize() const override;
// user-specified prefix
void embed(const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix,
int dimensionality = -1, bool doMean = true, bool atlas = false) override;
// automatic prefix
void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality = -1,
bool doMean = true, bool atlas = false) override;
private:
std::unique_ptr<LLamaPrivate> d_ptr;
bool m_supportsEmbedding = false;
bool m_supportsCompletion = false;
protected:
std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special) const override;
@@ -44,9 +57,11 @@ protected:
int32_t contextLength() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override;
int32_t maxContextLength(std::string const &modelPath) const override;
int32_t layerCount(std::string const &modelPath) const override;
void embedInternal(const std::vector<std::string> &texts, float *embeddings, std::string prefix, int dimensionality,
bool doMean, bool atlas, const EmbModelSpec *spec);
};
#endif // LLAMAMODEL_H

View File

@@ -213,21 +213,26 @@ LLModel *LLModel::Implementation::constructDefaultLlama() {
}
std::vector<LLModel::GPUDevice> LLModel::Implementation::availableGPUDevices() {
auto * llama = constructDefaultLlama();
auto *llama = constructDefaultLlama();
if (llama) { return llama->availableGPUDevices(0); }
return {};
}
int32_t LLModel::Implementation::maxContextLength(const std::string &modelPath) {
auto * llama = constructDefaultLlama();
auto *llama = constructDefaultLlama();
return llama ? llama->maxContextLength(modelPath) : -1;
}
int32_t LLModel::Implementation::layerCount(const std::string &modelPath) {
auto * llama = constructDefaultLlama();
auto *llama = constructDefaultLlama();
return llama ? llama->layerCount(modelPath) : -1;
}
bool LLModel::Implementation::isEmbeddingModel(const std::string &modelPath) {
auto *llama = constructDefaultLlama();
return llama && llama->isEmbeddingModel(modelPath);
}
void LLModel::Implementation::setImplementationsSearchPath(const std::string& path) {
s_implementations_search_path = path;
}

View File

@@ -1,13 +1,14 @@
#ifndef LLMODEL_H
#define LLMODEL_H
#include <string>
#include <functional>
#include <vector>
#include <string_view>
#include <fstream>
#include <cstdint>
#include <fstream>
#include <functional>
#include <limits>
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#define LLMODEL_MAX_PROMPT_BATCH 128
@@ -44,6 +45,7 @@ public:
static std::vector<GPUDevice> availableGPUDevices();
static int32_t maxContextLength(const std::string &modelPath);
static int32_t layerCount(const std::string &modelPath);
static bool isEmbeddingModel(const std::string &modelPath);
static void setImplementationsSearchPath(const std::string &path);
static const std::string &implementationsSearchPath();
@@ -83,7 +85,8 @@ public:
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual bool isModelBlacklisted(const std::string &modelPath) { (void)modelPath; return false; };
virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; };
virtual bool isEmbeddingModel(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual size_t stateSize() const { return 0; }
@@ -101,7 +104,15 @@ public:
bool special = false,
std::string *fakeReply = nullptr);
virtual std::vector<float> embedding(const std::string &text);
virtual size_t embeddingSize() const {
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
// user-specified prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix,
int dimensionality = -1, bool doMean = true, bool atlas = false);
// automatic prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval,
int dimensionality = -1, bool doMean = true, bool atlas = false);
virtual void setThreadCount(int32_t n_threads) { (void)n_threads; }
virtual int32_t threadCount() const { return 1; }

View File

@@ -4,6 +4,7 @@
#include <cerrno>
#include <cstring>
#include <iostream>
#include <optional>
#include <utility>
struct LLModelWrapper {
@@ -41,22 +42,22 @@ llmodel_model llmodel_model_create2(const char *model_path, const char *build_va
*error = last_error_message.c_str();
}
}
return reinterpret_cast<llmodel_model*>(wrapper);
return wrapper;
}
void llmodel_model_destroy(llmodel_model model) {
delete reinterpret_cast<LLModelWrapper*>(model);
delete static_cast<LLModelWrapper *>(model);
}
size_t llmodel_required_mem(llmodel_model model, const char *model_path, int n_ctx, int ngl)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->requiredMem(model_path, n_ctx, ngl);
}
bool llmodel_loadModel(llmodel_model model, const char *model_path, int n_ctx, int ngl)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
std::string modelPath(model_path);
if (wrapper->llModel->isModelBlacklisted(modelPath)) {
@@ -69,44 +70,28 @@ bool llmodel_loadModel(llmodel_model model, const char *model_path, int n_ctx, i
bool llmodel_isModelLoaded(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->isModelLoaded();
}
uint64_t llmodel_get_state_size(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->stateSize();
}
uint64_t llmodel_save_state_data(llmodel_model model, uint8_t *dest)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->saveState(dest);
}
uint64_t llmodel_restore_state_data(llmodel_model model, const uint8_t *src)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->restoreState(src);
}
// Wrapper functions for the C callbacks
bool prompt_wrapper(int32_t token_id, void *user_data) {
llmodel_prompt_callback callback = reinterpret_cast<llmodel_prompt_callback>(user_data);
return callback(token_id);
}
bool response_wrapper(int32_t token_id, const std::string &response, void *user_data) {
llmodel_response_callback callback = reinterpret_cast<llmodel_response_callback>(user_data);
return callback(token_id, response.c_str());
}
bool recalculate_wrapper(bool is_recalculating, void *user_data) {
llmodel_recalculate_callback callback = reinterpret_cast<llmodel_recalculate_callback>(user_data);
return callback(is_recalculating);
}
void llmodel_prompt(llmodel_model model, const char *prompt,
const char *prompt_template,
llmodel_prompt_callback prompt_callback,
@@ -116,15 +101,11 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
bool special,
const char *fake_reply)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
// Create std::function wrappers that call the C function pointers
std::function<bool(int32_t)> prompt_func =
std::bind(&prompt_wrapper, std::placeholders::_1, reinterpret_cast<void*>(prompt_callback));
std::function<bool(int32_t, const std::string&)> response_func =
std::bind(&response_wrapper, std::placeholders::_1, std::placeholders::_2, reinterpret_cast<void*>(response_callback));
std::function<bool(bool)> recalc_func =
std::bind(&recalculate_wrapper, std::placeholders::_1, reinterpret_cast<void*>(recalculate_callback));
auto response_func = [response_callback](int32_t token_id, const std::string &response) {
return response_callback(token_id, response.c_str());
};
if (size_t(ctx->n_past) < wrapper->promptContext.tokens.size())
wrapper->promptContext.tokens.resize(ctx->n_past);
@@ -147,8 +128,8 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
auto *fake_reply_p = fake_reply ? &fake_reply_str : nullptr;
// Call the C++ prompt method
wrapper->llModel->prompt(prompt, prompt_template, prompt_func, response_func, recalc_func, wrapper->promptContext,
special, fake_reply_p);
wrapper->llModel->prompt(prompt, prompt_template, prompt_callback, response_func, recalculate_callback,
wrapper->promptContext, special, fake_reply_p);
// Update the C context by giving access to the wrappers raw pointers to std::vector data
// which involves no copies
@@ -171,38 +152,60 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
ctx->context_erase = wrapper->promptContext.contextErase;
}
float *llmodel_embedding(llmodel_model model, const char *text, size_t *embedding_size)
{
if (model == nullptr || text == nullptr || !strlen(text)) {
*embedding_size = 0;
float *llmodel_embed(
llmodel_model model, const char **texts, size_t *embedding_size, const char *prefix, int dimensionality,
bool do_mean, bool atlas, const char **error
) {
auto *wrapper = static_cast<LLModelWrapper *>(model);
if (!texts || !*texts) {
if (error)
*error = strdup("'texts' is NULL or empty");
return nullptr;
}
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
std::vector<float> embeddingVector = wrapper->llModel->embedding(text);
float *embedding = (float *)malloc(embeddingVector.size() * sizeof(float));
if (embedding == nullptr) {
*embedding_size = 0;
std::vector<std::string> textsVec;
while (*texts) { textsVec.emplace_back(*texts++); }
size_t embd_size;
float *embedding;
try {
embd_size = wrapper->llModel->embeddingSize();
if (dimensionality > 0 && dimensionality < int(embd_size))
embd_size = dimensionality;
embd_size *= textsVec.size();
std::optional<std::string> prefixStr;
if (prefix) { prefixStr = prefix; }
embedding = new float[embd_size];
wrapper->llModel->embed(textsVec, embedding, prefixStr, dimensionality, do_mean, atlas);
} catch (std::exception const &e) {
if (error)
*error = strdup(e.what());
return nullptr;
}
std::copy(embeddingVector.begin(), embeddingVector.end(), embedding);
*embedding_size = embeddingVector.size();
*embedding_size = embd_size;
return embedding;
}
void llmodel_free_embedding(float *ptr)
{
free(ptr);
delete[] ptr;
}
void llmodel_setThreadCount(llmodel_model model, int32_t n_threads)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
wrapper->llModel->setThreadCount(n_threads);
}
int32_t llmodel_threadCount(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->threadCount();
}
@@ -218,7 +221,7 @@ const char *llmodel_get_implementation_search_path()
struct llmodel_gpu_device* llmodel_available_gpu_devices(llmodel_model model, size_t memoryRequired, int* num_devices)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
std::vector<LLModel::GPUDevice> devices = wrapper->llModel->availableGPUDevices(memoryRequired);
// Set the num_devices
@@ -242,24 +245,24 @@ struct llmodel_gpu_device* llmodel_available_gpu_devices(llmodel_model model, si
bool llmodel_gpu_init_gpu_device_by_string(llmodel_model model, size_t memoryRequired, const char *device)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(memoryRequired, std::string(device));
}
bool llmodel_gpu_init_gpu_device_by_struct(llmodel_model model, const llmodel_gpu_device *device)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(device->index);
}
bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(device);
}
bool llmodel_has_gpu_device(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->hasGPUDevice();
}

View File

@@ -186,13 +186,23 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
* NOTE: If given NULL pointers for the model or text, or an empty text, a NULL pointer will be
* returned. Bindings should signal an error when NULL is the return value.
* @param model A pointer to the llmodel_model instance.
* @param text A string representing the text to generate an embedding for.
* @param texts A pointer to a NULL-terminated array of strings representing the texts to generate an
* embedding for.
* @param embedding_size A pointer to a size_t type that will be set by the call indicating the length
* of the returned floating point array.
* @param prefix The model-specific prefix representing the embedding task, without the trailing colon. NULL for no
* prefix.
* @param dimensionality The embedding dimension, for use with Matryoshka-capable models. Set to -1 to for full-size.
* @param do_mean True to average multiple embeddings if the text is longer than the model can accept, False to
* truncate.
* @param atlas Try to be fully compatible with the Atlas API. Currently, this means texts longer than 8192 tokens with
* long_text_mode="mean" will raise an error. Disabled by default.
* @param error Return location for a malloc()ed string that will be set on error, or NULL.
* @return A pointer to an array of floating point values passed to the calling method which then will
* be responsible for lifetime of this memory.
* be responsible for lifetime of this memory. NULL if an error occurred.
*/
float *llmodel_embedding(llmodel_model model, const char *text, size_t *embedding_size);
float *llmodel_embed(llmodel_model model, const char **texts, size_t *embedding_size, const char *prefix,
int dimensionality, bool do_mean, bool atlas, const char **error);
/**
* Frees the memory allocated by the llmodel_embedding function.

View File

@@ -3,6 +3,7 @@
#include <cassert>
#include <iostream>
#include <regex>
#include <string>
#include <unordered_set>
// TODO(cebtenzzre): replace this with llama_kv_cache_seq_shift for llamamodel (GPT-J needs this as-is)
@@ -267,12 +268,28 @@ void LLModel::generateResponse(std::function<bool(int32_t, const std::string&)>
}
}
std::vector<float> LLModel::embedding(const std::string &text)
{
(void)text;
if (!supportsCompletion()) {
std::string errorMessage = "ERROR: this model does not support generating embeddings!\n";
std::cerr << implementation().modelType() << errorMessage;
}
return std::vector<float>();
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix, int dimensionality,
bool doMean, bool atlas
) {
(void)texts;
(void)embeddings;
(void)prefix;
(void)dimensionality;
(void)doMean;
(void)atlas;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality, bool doMean,
bool atlas
) {
(void)texts;
(void)embeddings;
(void)isRetrieval;
(void)dimensionality;
(void)doMean;
(void)atlas;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}