mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-09-11 21:39:11 +00:00
backend: port BERT to GGUF
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
@@ -34,7 +35,6 @@ struct bert_hparams
|
||||
int32_t n_intermediate = 1536;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 6;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct bert_layer
|
||||
@@ -88,7 +88,6 @@ struct bert_model
|
||||
std::vector<bert_layer> layers;
|
||||
|
||||
struct ggml_context *ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
@@ -482,7 +481,6 @@ void bert_eval(
|
||||
//
|
||||
|
||||
void bert_free(bert_ctx * ctx) {
|
||||
ggml_free(ctx->model.ctx);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
@@ -492,63 +490,130 @@ struct bert_ctx * bert_load_from_file(const char *fname)
|
||||
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname);
|
||||
#endif
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin)
|
||||
{
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *)&magic, sizeof(magic));
|
||||
if (magic != 0x62657274)
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
bert_ctx * new_bert = new bert_ctx;
|
||||
bert_model & model = new_bert->model;
|
||||
bert_vocab & vocab = new_bert->vocab;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ &model.ctx,
|
||||
};
|
||||
gguf_context *ggufctx = gguf_init_from_file(fname, params);
|
||||
if (!ggufctx) {
|
||||
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
|
||||
printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
|
||||
printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
|
||||
|
||||
// print some standard metadata
|
||||
{
|
||||
int keyidx;
|
||||
|
||||
keyidx = gguf_find_key(ggufctx, "general.name");
|
||||
if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.description");
|
||||
if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.author");
|
||||
if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.license");
|
||||
if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.architecture");
|
||||
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.file_type");
|
||||
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
|
||||
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
|
||||
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
||||
}
|
||||
|
||||
// check required metadata
|
||||
{
|
||||
// check model architecture kv
|
||||
int keyidx = gguf_find_key(ggufctx, "general.architecture");
|
||||
if (keyidx == -1) {
|
||||
fprintf(stderr, "%s: gguf model architecture not found!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
|
||||
fprintf(stderr, "%s: model architecture not supported!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto &hparams = model.hparams;
|
||||
|
||||
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *)&hparams.n_max_tokens, sizeof(hparams.n_max_tokens));
|
||||
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *)&hparams.n_intermediate, sizeof(hparams.n_intermediate));
|
||||
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *)&hparams.f16, sizeof(hparams.f16));
|
||||
bool ok = false;
|
||||
int keyidx;
|
||||
|
||||
do {
|
||||
keyidx = gguf_find_key(ggufctx, "bert.context_length");
|
||||
if (keyidx == -1) { break; }
|
||||
hparams.n_max_tokens = gguf_get_val_u32(ggufctx, keyidx);
|
||||
|
||||
keyidx = gguf_find_key(ggufctx, "bert.embedding_length");
|
||||
if (keyidx == -1) { break; }
|
||||
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
|
||||
|
||||
keyidx = gguf_find_key(ggufctx, "bert.feed_forward_length");
|
||||
if (keyidx == -1) { break; }
|
||||
hparams.n_intermediate = gguf_get_val_u32(ggufctx, keyidx);
|
||||
|
||||
keyidx = gguf_find_key(ggufctx, "bert.attention.head_count");
|
||||
if (keyidx == -1) { break; }
|
||||
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
|
||||
|
||||
keyidx = gguf_find_key(ggufctx, "bert.block_count");
|
||||
if (keyidx == -1) { break; }
|
||||
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
|
||||
|
||||
ok = true;
|
||||
} while (false);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: required hparam missing!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_max_tokens = %d\n", __func__, hparams.n_max_tokens);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
#endif
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = model.hparams.n_vocab;
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++)
|
||||
{
|
||||
uint32_t len;
|
||||
fin.read((char *)&len, sizeof(len));
|
||||
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
|
||||
if (keyidx == -1) {
|
||||
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
|
||||
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *)word.data(), len);
|
||||
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
|
||||
if (tokens_keyidx == -1) {
|
||||
fprintf(stderr, "%s: bert tokenizer vocab not found!\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
|
||||
printf("%s: bert tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
|
||||
|
||||
for (int i = 0; i < hparams.n_vocab; i++) {
|
||||
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
|
||||
|
||||
if (word[0] == '#' && word[1] == '#')
|
||||
{
|
||||
@@ -564,290 +629,52 @@ struct bert_ctx * bert_load_from_file(const char *fname)
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// in order to save memory and also to speed up the computation
|
||||
ggml_type wtype = GGML_TYPE_COUNT;
|
||||
switch (model.hparams.f16)
|
||||
{
|
||||
case 0:
|
||||
wtype = GGML_TYPE_F32;
|
||||
break;
|
||||
case 1:
|
||||
wtype = GGML_TYPE_F16;
|
||||
break;
|
||||
case 2:
|
||||
wtype = GGML_TYPE_Q4_0;
|
||||
break;
|
||||
case 3:
|
||||
wtype = GGML_TYPE_Q4_1;
|
||||
break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
||||
__func__, fname, model.hparams.f16);
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
auto &ctx = model.ctx;
|
||||
|
||||
size_t model_mem_req = 0;
|
||||
|
||||
{
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_max_tokens = hparams.n_max_tokens;
|
||||
const int n_intermediate = hparams.n_intermediate;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
// Calculate size requirements
|
||||
|
||||
model_mem_req += n_embd * n_vocab * ggml_type_sizef(wtype); // word_embeddings
|
||||
model_mem_req += n_embd * 2 * ggml_type_sizef(wtype); // token_type_embeddings
|
||||
model_mem_req += n_embd * n_max_tokens * ggml_type_sizef(wtype); // position_embeddings
|
||||
|
||||
model_mem_req += 2 * n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_e_*
|
||||
|
||||
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_*
|
||||
|
||||
model_mem_req += 4 * n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // kqvo weights
|
||||
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // kqvo bias
|
||||
|
||||
model_mem_req += 2 * n_layer * (n_embd * n_intermediate * ggml_type_sizef(wtype)); // ff_*_w
|
||||
model_mem_req += n_layer * (n_intermediate * ggml_type_sizef(GGML_TYPE_F32)); // ff_i_b
|
||||
model_mem_req += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ff_o_b
|
||||
|
||||
model_mem_req += (5 + 16 * n_layer) * ggml_tensor_overhead(); // object overhead
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, model_mem_req / (1024.0 * 1024.0));
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ggml_get_mem_size(ctx) / (1024.0 * 1024.0));
|
||||
#endif
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = model_mem_req,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx)
|
||||
{
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_intermediate = hparams.n_intermediate;
|
||||
const int n_max_tokens = hparams.n_max_tokens;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
const int n_layer = model.hparams.n_layer;
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.word_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.token_type_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, 2);
|
||||
model.position_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_max_tokens);
|
||||
model.word_embeddings = ggml_get_tensor(ctx, "token_embd.weight");
|
||||
model.token_type_embeddings = ggml_get_tensor(ctx, "token_types.weight");
|
||||
model.position_embeddings = ggml_get_tensor(ctx, "position_embd.weight");
|
||||
model.ln_e_w = ggml_get_tensor(ctx, "output_norm.weight");
|
||||
model.ln_e_b = ggml_get_tensor(ctx, "output_norm.bias");
|
||||
|
||||
model.ln_e_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_e_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["embeddings.word_embeddings.weight"] = model.word_embeddings;
|
||||
model.tensors["embeddings.token_type_embeddings.weight"] = model.token_type_embeddings;
|
||||
model.tensors["embeddings.position_embeddings.weight"] = model.position_embeddings;
|
||||
|
||||
model.tensors["embeddings.LayerNorm.weight"] = model.ln_e_w;
|
||||
model.tensors["embeddings.LayerNorm.bias"] = model.ln_e_b;
|
||||
auto name = [](int i, std::string n) {
|
||||
static std::string key;
|
||||
key = "blk." + std::to_string(i) + "." + n;
|
||||
return key.c_str();
|
||||
};
|
||||
|
||||
for (int i = 0; i < n_layer; ++i)
|
||||
{
|
||||
auto &layer = model.layers[i];
|
||||
|
||||
layer.ln_att_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_att_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_out_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.q_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.k_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.v_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.o_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ff_i_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_intermediate);
|
||||
layer.ff_i_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_intermediate);
|
||||
|
||||
layer.ff_o_w = ggml_new_tensor_2d(ctx, wtype, n_intermediate, n_embd);
|
||||
layer.ff_o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.query.weight"] = layer.q_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.query.bias"] = layer.q_b;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.key.weight"] = layer.k_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.key.bias"] = layer.k_b;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.value.weight"] = layer.v_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.value.bias"] = layer.v_b;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.LayerNorm.weight"] = layer.ln_att_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.LayerNorm.bias"] = layer.ln_att_b;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.dense.weight"] = layer.o_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.dense.bias"] = layer.o_b;
|
||||
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".intermediate.dense.weight"] = layer.ff_i_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".intermediate.dense.bias"] = layer.ff_i_b;
|
||||
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".output.LayerNorm.weight"] = layer.ln_out_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".output.LayerNorm.bias"] = layer.ln_out_b;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".output.dense.weight"] = layer.ff_o_w;
|
||||
model.tensors["encoder.layer." + std::to_string(i) + ".output.dense.bias"] = layer.ff_o_b;
|
||||
layer.ln_att_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
|
||||
layer.ln_att_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias"));
|
||||
layer.ln_out_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight"));
|
||||
layer.ln_out_b = ggml_get_tensor(ctx, name(i, "ffn_norm.bias"));
|
||||
layer.q_w = ggml_get_tensor(ctx, name(i, "attn_q.weight"));
|
||||
layer.q_b = ggml_get_tensor(ctx, name(i, "attn_q.bias"));
|
||||
layer.k_w = ggml_get_tensor(ctx, name(i, "attn_k.weight"));
|
||||
layer.k_b = ggml_get_tensor(ctx, name(i, "attn_k.bias"));
|
||||
layer.v_w = ggml_get_tensor(ctx, name(i, "attn_v.weight"));
|
||||
layer.v_b = ggml_get_tensor(ctx, name(i, "attn_v.bias"));
|
||||
layer.o_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
|
||||
layer.o_b = ggml_get_tensor(ctx, name(i, "attn_output.bias"));
|
||||
layer.ff_i_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
|
||||
layer.ff_i_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias"));
|
||||
layer.ff_o_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
|
||||
layer.ff_o_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias"));
|
||||
}
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
int n_tensors = 0;
|
||||
#if defined(DEBUG_BERT)
|
||||
size_t total_size = 0;
|
||||
#endif
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
printf("%s: ", __func__);
|
||||
#endif
|
||||
|
||||
while (true)
|
||||
{
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
int64_t nelements = 1;
|
||||
int64_t ne[2] = {1, 1};
|
||||
for (int i = 0; i < n_dims; ++i)
|
||||
{
|
||||
int32_t ne_cur;
|
||||
fin.read(reinterpret_cast<char *>(&ne_cur), sizeof(ne_cur));
|
||||
ne[i] = ne_cur;
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end())
|
||||
{
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements)
|
||||
{
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
|
||||
{
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%ld, %ld], expected [%ld, %ld]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
static const char *ftype_str[] = {
|
||||
"f32",
|
||||
"f16",
|
||||
"q4_0",
|
||||
"q4_1",
|
||||
};
|
||||
printf("%24s - [%5ld, %5ld], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
|
||||
#endif
|
||||
|
||||
size_t bpe = 0;
|
||||
|
||||
switch (ftype)
|
||||
{
|
||||
case 0:
|
||||
bpe = ggml_type_size(GGML_TYPE_F32);
|
||||
break;
|
||||
case 1:
|
||||
bpe = ggml_type_size(GGML_TYPE_F16);
|
||||
break;
|
||||
case 2:
|
||||
bpe = ggml_type_size(GGML_TYPE_Q4_0);
|
||||
assert(ne[0] % 64 == 0);
|
||||
break;
|
||||
case 3:
|
||||
bpe = ggml_type_size(GGML_TYPE_Q4_1);
|
||||
assert(ne[0] % 64 == 0);
|
||||
break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor))
|
||||
{
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %lu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
|
||||
bert_free(new_bert);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
// printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
#endif
|
||||
|
||||
if (++n_tensors % 8 == 0)
|
||||
{
|
||||
#if defined(DEBUG_BERT)
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(DEBUG_BERT)
|
||||
printf(" done\n");
|
||||
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
|
||||
#endif
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
// Calculate space requirements for setting up context buffers later
|
||||
{
|
||||
bert_vocab_id tokens[] = {0, 1, 2, 3};
|
||||
@@ -1019,6 +846,16 @@ const std::vector<LLModel::Token> &Bert::endTokens() const
|
||||
return out;
|
||||
}
|
||||
|
||||
std::string get_arch_name(gguf_context *ctx_gguf) {
|
||||
std::string arch_name;
|
||||
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
|
||||
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
|
||||
if (ktype != GGUF_TYPE_STRING) {
|
||||
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
|
||||
}
|
||||
return gguf_get_val_str(ctx_gguf, kid);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define DLL_EXPORT __declspec(dllexport)
|
||||
#else
|
||||
@@ -1038,16 +875,21 @@ DLL_EXPORT const char *get_build_variant() {
|
||||
return GGML_BUILD_VARIANT;
|
||||
}
|
||||
|
||||
DLL_EXPORT bool magic_match(const char* fname) {
|
||||
#if 0
|
||||
uint32_t magic = 0;
|
||||
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
|
||||
if (magic != 0x62657274) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#endif
|
||||
return false;
|
||||
DLL_EXPORT bool magic_match(const char * fname) {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
|
||||
if (!ctx_gguf)
|
||||
return false;
|
||||
|
||||
bool isValid = gguf_get_version(ctx_gguf) <= 2;
|
||||
isValid = isValid && get_arch_name(ctx_gguf) == "bert";
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
return isValid;
|
||||
}
|
||||
|
||||
DLL_EXPORT LLModel *construct() {
|
||||
|
Reference in New Issue
Block a user