backend: port BERT to GGUF

This commit is contained in:
Cebtenzzre
2023-09-25 13:22:52 -04:00
committed by Adam Treat
parent 4392bf26e0
commit 42bcb814b3
3 changed files with 298 additions and 420 deletions

View File

@@ -4,6 +4,7 @@
#include "ggml.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
@@ -34,7 +35,6 @@ struct bert_hparams
int32_t n_intermediate = 1536;
int32_t n_head = 12;
int32_t n_layer = 6;
int32_t f16 = 1;
};
struct bert_layer
@@ -88,7 +88,6 @@ struct bert_model
std::vector<bert_layer> layers;
struct ggml_context *ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
@@ -482,7 +481,6 @@ void bert_eval(
//
void bert_free(bert_ctx * ctx) {
ggml_free(ctx->model.ctx);
delete ctx;
}
@@ -492,63 +490,130 @@ struct bert_ctx * bert_load_from_file(const char *fname)
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname);
#endif
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin)
{
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
return nullptr;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x62657274)
{
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname);
return nullptr;
}
}
bert_ctx * new_bert = new bert_ctx;
bert_model & model = new_bert->model;
bert_vocab & vocab = new_bert->vocab;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &model.ctx,
};
gguf_context *ggufctx = gguf_init_from_file(fname, params);
if (!ggufctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
return nullptr;
}
printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
// print some standard metadata
{
int keyidx;
keyidx = gguf_find_key(ggufctx, "general.name");
if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.description");
if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.author");
if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.license");
if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.file_type");
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
}
// check required metadata
{
// check model architecture kv
int keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx == -1) {
fprintf(stderr, "%s: gguf model architecture not found!\n", __func__);
return nullptr;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
fprintf(stderr, "%s: model architecture not supported!\n", __func__);
return nullptr;
}
}
// load hparams
{
auto &hparams = model.hparams;
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.n_max_tokens, sizeof(hparams.n_max_tokens));
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *)&hparams.n_intermediate, sizeof(hparams.n_intermediate));
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *)&hparams.f16, sizeof(hparams.f16));
bool ok = false;
int keyidx;
do {
keyidx = gguf_find_key(ggufctx, "bert.context_length");
if (keyidx == -1) { break; }
hparams.n_max_tokens = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.embedding_length");
if (keyidx == -1) { break; }
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.feed_forward_length");
if (keyidx == -1) { break; }
hparams.n_intermediate = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.attention.head_count");
if (keyidx == -1) { break; }
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "bert.block_count");
if (keyidx == -1) { break; }
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
ok = true;
} while (false);
if (!ok) {
fprintf(stderr, "%s: required hparam missing!\n", __func__);
return nullptr;
}
#if defined(DEBUG_BERT)
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_max_tokens = %d\n", __func__, hparams.n_max_tokens);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
#endif
}
// load vocab
{
int32_t n_vocab = model.hparams.n_vocab;
auto & hparams = model.hparams;
std::string word;
for (int i = 0; i < n_vocab; i++)
{
uint32_t len;
fin.read((char *)&len, sizeof(len));
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
if (keyidx == -1) {
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
return nullptr;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) {
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
return nullptr;
}
word.resize(len);
fin.read((char *)word.data(), len);
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
if (tokens_keyidx == -1) {
fprintf(stderr, "%s: bert tokenizer vocab not found!\n", __func__);
return nullptr;
}
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
printf("%s: bert tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
for (int i = 0; i < hparams.n_vocab; i++) {
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
if (word[0] == '#' && word[1] == '#')
{
@@ -564,290 +629,52 @@ struct bert_ctx * bert_load_from_file(const char *fname)
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16)
{
case 0:
wtype = GGML_TYPE_F32;
break;
case 1:
wtype = GGML_TYPE_F16;
break;
case 2:
wtype = GGML_TYPE_Q4_0;
break;
case 3:
wtype = GGML_TYPE_Q4_1;
break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname, model.hparams.f16);
bert_free(new_bert);
return nullptr;
}
}
auto &ctx = model.ctx;
size_t model_mem_req = 0;
{
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_max_tokens = hparams.n_max_tokens;
const int n_intermediate = hparams.n_intermediate;
const int n_vocab = hparams.n_vocab;
// Calculate size requirements
model_mem_req += n_embd * n_vocab * ggml_type_sizef(wtype); // word_embeddings
model_mem_req += n_embd * 2 * ggml_type_sizef(wtype); // token_type_embeddings
model_mem_req += n_embd * n_max_tokens * ggml_type_sizef(wtype); // position_embeddings
model_mem_req += 2 * n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_e_*
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_*
model_mem_req += 4 * n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // kqvo weights
model_mem_req += 4 * n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // kqvo bias
model_mem_req += 2 * n_layer * (n_embd * n_intermediate * ggml_type_sizef(wtype)); // ff_*_w
model_mem_req += n_layer * (n_intermediate * ggml_type_sizef(GGML_TYPE_F32)); // ff_i_b
model_mem_req += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ff_o_b
model_mem_req += (5 + 16 * n_layer) * ggml_tensor_overhead(); // object overhead
#if defined(DEBUG_BERT)
printf("%s: ggml ctx size = %6.2f MB\n", __func__, model_mem_req / (1024.0 * 1024.0));
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ggml_get_mem_size(ctx) / (1024.0 * 1024.0));
#endif
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = model_mem_req,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx)
{
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
bert_free(new_bert);
return nullptr;
}
}
// prepare memory for the weights
{
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_intermediate = hparams.n_intermediate;
const int n_max_tokens = hparams.n_max_tokens;
const int n_vocab = hparams.n_vocab;
const int n_layer = model.hparams.n_layer;
model.layers.resize(n_layer);
model.word_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.token_type_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, 2);
model.position_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_max_tokens);
model.word_embeddings = ggml_get_tensor(ctx, "token_embd.weight");
model.token_type_embeddings = ggml_get_tensor(ctx, "token_types.weight");
model.position_embeddings = ggml_get_tensor(ctx, "position_embd.weight");
model.ln_e_w = ggml_get_tensor(ctx, "output_norm.weight");
model.ln_e_b = ggml_get_tensor(ctx, "output_norm.bias");
model.ln_e_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_e_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["embeddings.word_embeddings.weight"] = model.word_embeddings;
model.tensors["embeddings.token_type_embeddings.weight"] = model.token_type_embeddings;
model.tensors["embeddings.position_embeddings.weight"] = model.position_embeddings;
model.tensors["embeddings.LayerNorm.weight"] = model.ln_e_w;
model.tensors["embeddings.LayerNorm.bias"] = model.ln_e_b;
auto name = [](int i, std::string n) {
static std::string key;
key = "blk." + std::to_string(i) + "." + n;
return key.c_str();
};
for (int i = 0; i < n_layer; ++i)
{
auto &layer = model.layers[i];
layer.ln_att_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_att_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_out_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.q_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.k_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.v_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.o_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ff_i_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_intermediate);
layer.ff_i_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_intermediate);
layer.ff_o_w = ggml_new_tensor_2d(ctx, wtype, n_intermediate, n_embd);
layer.ff_o_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.query.weight"] = layer.q_w;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.query.bias"] = layer.q_b;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.key.weight"] = layer.k_w;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.key.bias"] = layer.k_b;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.value.weight"] = layer.v_w;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.self.value.bias"] = layer.v_b;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.LayerNorm.weight"] = layer.ln_att_w;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.LayerNorm.bias"] = layer.ln_att_b;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.dense.weight"] = layer.o_w;
model.tensors["encoder.layer." + std::to_string(i) + ".attention.output.dense.bias"] = layer.o_b;
model.tensors["encoder.layer." + std::to_string(i) + ".intermediate.dense.weight"] = layer.ff_i_w;
model.tensors["encoder.layer." + std::to_string(i) + ".intermediate.dense.bias"] = layer.ff_i_b;
model.tensors["encoder.layer." + std::to_string(i) + ".output.LayerNorm.weight"] = layer.ln_out_w;
model.tensors["encoder.layer." + std::to_string(i) + ".output.LayerNorm.bias"] = layer.ln_out_b;
model.tensors["encoder.layer." + std::to_string(i) + ".output.dense.weight"] = layer.ff_o_w;
model.tensors["encoder.layer." + std::to_string(i) + ".output.dense.bias"] = layer.ff_o_b;
layer.ln_att_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
layer.ln_att_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias"));
layer.ln_out_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight"));
layer.ln_out_b = ggml_get_tensor(ctx, name(i, "ffn_norm.bias"));
layer.q_w = ggml_get_tensor(ctx, name(i, "attn_q.weight"));
layer.q_b = ggml_get_tensor(ctx, name(i, "attn_q.bias"));
layer.k_w = ggml_get_tensor(ctx, name(i, "attn_k.weight"));
layer.k_b = ggml_get_tensor(ctx, name(i, "attn_k.bias"));
layer.v_w = ggml_get_tensor(ctx, name(i, "attn_v.weight"));
layer.v_b = ggml_get_tensor(ctx, name(i, "attn_v.bias"));
layer.o_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
layer.o_b = ggml_get_tensor(ctx, name(i, "attn_output.bias"));
layer.ff_i_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
layer.ff_i_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias"));
layer.ff_o_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
layer.ff_o_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias"));
}
}
// load weights
{
int n_tensors = 0;
#if defined(DEBUG_BERT)
size_t total_size = 0;
#endif
#if defined(DEBUG_BERT)
printf("%s: ", __func__);
#endif
while (true)
{
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof())
{
break;
}
int64_t nelements = 1;
int64_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i)
{
int32_t ne_cur;
fin.read(reinterpret_cast<char *>(&ne_cur), sizeof(ne_cur));
ne[i] = ne_cur;
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end())
{
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
bert_free(new_bert);
return nullptr;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements)
{
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
bert_free(new_bert);
return nullptr;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
{
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%ld, %ld], expected [%ld, %ld]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
bert_free(new_bert);
return nullptr;
}
#if defined(DEBUG_BERT)
static const char *ftype_str[] = {
"f32",
"f16",
"q4_0",
"q4_1",
};
printf("%24s - [%5ld, %5ld], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
#endif
size_t bpe = 0;
switch (ftype)
{
case 0:
bpe = ggml_type_size(GGML_TYPE_F32);
break;
case 1:
bpe = ggml_type_size(GGML_TYPE_F16);
break;
case 2:
bpe = ggml_type_size(GGML_TYPE_Q4_0);
assert(ne[0] % 64 == 0);
break;
case 3:
bpe = ggml_type_size(GGML_TYPE_Q4_1);
assert(ne[0] % 64 == 0);
break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
bert_free(new_bert);
return nullptr;
}
};
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor))
{
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %lu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
bert_free(new_bert);
return nullptr;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
#if defined(DEBUG_BERT)
// printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
#endif
if (++n_tensors % 8 == 0)
{
#if defined(DEBUG_BERT)
printf(".");
fflush(stdout);
#endif
}
}
#if defined(DEBUG_BERT)
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
#endif
}
fin.close();
// Calculate space requirements for setting up context buffers later
{
bert_vocab_id tokens[] = {0, 1, 2, 3};
@@ -1019,6 +846,16 @@ const std::vector<LLModel::Token> &Bert::endTokens() const
return out;
}
std::string get_arch_name(gguf_context *ctx_gguf) {
std::string arch_name;
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != GGUF_TYPE_STRING) {
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
}
return gguf_get_val_str(ctx_gguf, kid);
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
@@ -1038,16 +875,21 @@ DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(const char* fname) {
#if 0
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x62657274) {
return false;
}
return true;
#endif
return false;
DLL_EXPORT bool magic_match(const char * fname) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
if (!ctx_gguf)
return false;
bool isValid = gguf_get_version(ctx_gguf) <= 2;
isValid = isValid && get_arch_name(ctx_gguf) == "bert";
gguf_free(ctx_gguf);
return isValid;
}
DLL_EXPORT LLModel *construct() {