Revert "typescript bindings maintenance (#2363)"

As discussed on Discord, this PR was not ready to be merged. CI fails on
it.

This reverts commit a602f7fde7.

Signed-off-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
Jared Van Bortel
2024-06-03 17:25:28 -04:00
parent a602f7fde7
commit 55d709862f
30 changed files with 876 additions and 1115 deletions

View File

@@ -3,24 +3,23 @@
Napi::Function NodeModelWrapper::GetClass(Napi::Env env)
{
Napi::Function self = DefineClass(
env, "LLModel",
{InstanceMethod("load", &NodeModelWrapper::Load),
InstanceMethod("initGpu", &NodeModelWrapper::InitGpu),
InstanceMethod("infer", &NodeModelWrapper::Infer),
InstanceMethod("embed", &NodeModelWrapper::Embed),
InstanceMethod("isModelLoaded", &NodeModelWrapper::IsModelLoaded),
InstanceMethod("getType", &NodeModelWrapper::GetType),
InstanceMethod("getName", &NodeModelWrapper::GetName),
InstanceMethod("getStateSize", &NodeModelWrapper::GetStateSize),
InstanceMethod("setThreadCount", &NodeModelWrapper::SetThreadCount),
InstanceMethod("getThreadCount", &NodeModelWrapper::GetThreadCount),
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
InstanceMethod("getGpuDevices", &NodeModelWrapper::GetGpuDevices),
InstanceMethod("getRequiredMemory", &NodeModelWrapper::GetRequiredMemory),
InstanceMethod("dispose", &NodeModelWrapper::Dispose)});
Napi::Function self = DefineClass(env, "LLModel",
{InstanceMethod("type", &NodeModelWrapper::GetType),
InstanceMethod("isModelLoaded", &NodeModelWrapper::IsModelLoaded),
InstanceMethod("name", &NodeModelWrapper::GetName),
InstanceMethod("stateSize", &NodeModelWrapper::StateSize),
InstanceMethod("infer", &NodeModelWrapper::Infer),
InstanceMethod("setThreadCount", &NodeModelWrapper::SetThreadCount),
InstanceMethod("embed", &NodeModelWrapper::GenerateEmbedding),
InstanceMethod("threadCount", &NodeModelWrapper::ThreadCount),
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
InstanceMethod("initGpuByString", &NodeModelWrapper::InitGpuByString),
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
InstanceMethod("listGpu", &NodeModelWrapper::GetGpuDevices),
InstanceMethod("memoryNeeded", &NodeModelWrapper::GetRequiredMemory),
InstanceMethod("dispose", &NodeModelWrapper::Dispose)});
// Keep a static reference to the constructor
//
Napi::FunctionReference *constructor = new Napi::FunctionReference();
*constructor = Napi::Persistent(self);
env.SetInstanceData(constructor);
@@ -30,13 +29,13 @@ Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo &info)
{
auto env = info.Env();
return Napi::Number::New(
env, static_cast<uint32_t>(llmodel_required_mem(GetInference(), model_file.c_str(), n_ctx, n_gpu_layers)));
env, static_cast<uint32_t>(llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers)));
}
Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo &info)
{
auto env = info.Env();
int num_devices = 0;
auto mem_size = llmodel_required_mem(GetInference(), model_file.c_str(), n_ctx, n_gpu_layers);
auto mem_size = llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers);
llmodel_gpu_device *all_devices = llmodel_available_gpu_devices(mem_size, &num_devices);
if (all_devices == nullptr)
{
@@ -64,7 +63,6 @@ Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo &info)
js_gpu_device["heapSize"] = static_cast<uint32_t>(gpu_device.heapSize);
js_gpu_device["name"] = gpu_device.name;
js_gpu_device["vendor"] = gpu_device.vendor;
js_gpu_device["backend"] = gpu_device.backend;
js_array[i] = js_gpu_device;
}
@@ -73,13 +71,35 @@ Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo &info)
Napi::Value NodeModelWrapper::GetType(const Napi::CallbackInfo &info)
{
if (model_type.empty())
if (type.empty())
{
return info.Env().Undefined();
}
return Napi::String::New(info.Env(), model_type);
return Napi::String::New(info.Env(), type);
}
Napi::Value NodeModelWrapper::InitGpuByString(const Napi::CallbackInfo &info)
{
auto env = info.Env();
size_t memory_required = static_cast<size_t>(info[0].As<Napi::Number>().Uint32Value());
std::string gpu_device_identifier = info[1].As<Napi::String>();
size_t converted_value;
if (memory_required <= std::numeric_limits<size_t>::max())
{
converted_value = static_cast<size_t>(memory_required);
}
else
{
Napi::Error::New(env, "invalid number for memory size. Exceeded bounds for memory.")
.ThrowAsJavaScriptException();
return env.Undefined();
}
auto result = llmodel_gpu_init_gpu_device_by_string(GetInference(), converted_value, gpu_device_identifier.c_str());
return Napi::Boolean::New(env, result);
}
Napi::Value NodeModelWrapper::HasGpuDevice(const Napi::CallbackInfo &info)
{
return Napi::Boolean::New(info.Env(), llmodel_has_gpu_device(GetInference()));
@@ -90,61 +110,82 @@ NodeModelWrapper::NodeModelWrapper(const Napi::CallbackInfo &info) : Napi::Objec
auto env = info.Env();
auto config_object = info[0].As<Napi::Object>();
// sets the directories where runtime libs are to be searched
llmodel_set_implementation_search_path(config_object.Has("librariesPath")
? config_object.Get("librariesPath").As<Napi::String>().Utf8Value().c_str()
: ".");
// sets the directory where models (gguf files) are to be searched
llmodel_set_implementation_search_path(
config_object.Has("library_path") ? config_object.Get("library_path").As<Napi::String>().Utf8Value().c_str()
: ".");
model_file = config_object.Get("modelFile").As<Napi::String>().Utf8Value();
model_name = model_file.substr(model_file.find_last_of("/\\") + 1);
backend = config_object.Get("backend").As<Napi::String>().Utf8Value();
n_ctx = config_object.Get("nCtx").As<Napi::Number>().Int32Value();
n_gpu_layers = config_object.Get("nGpuLayers").As<Napi::Number>().Int32Value();
std::string model_name = config_object.Get("model_name").As<Napi::String>();
fs::path model_path = config_object.Get("model_path").As<Napi::String>().Utf8Value();
std::string full_weight_path = (model_path / fs::path(model_name)).string();
const char *err;
inference_ = llmodel_model_create2(model_file.c_str(), backend.c_str(), &err);
name = model_name.empty() ? model_path.filename().string() : model_name;
full_model_path = full_weight_path;
nCtx = config_object.Get("nCtx").As<Napi::Number>().Int32Value();
nGpuLayers = config_object.Get("ngl").As<Napi::Number>().Int32Value();
const char *e;
inference_ = llmodel_model_create2(full_weight_path.c_str(), "auto", &e);
if (!inference_)
{
Napi::Error::New(env, err).ThrowAsJavaScriptException();
Napi::Error::New(env, e).ThrowAsJavaScriptException();
return;
}
if (GetInference() == nullptr)
{
std::cerr << "Tried searching libraries in \"" << llmodel_get_implementation_search_path() << "\"" << std::endl;
std::cerr << "Tried using model weights in \"" << model_file << "\"" << std::endl;
std::cerr << "Tried searching for model weight in \"" << full_weight_path << "\"" << std::endl;
std::cerr << "Do you have runtime libraries installed?" << std::endl;
Napi::Error::New(env, "Had an issue creating llmodel object, inference is null").ThrowAsJavaScriptException();
return;
}
// optional
if (config_object.Has("modelType"))
std::string device = config_object.Get("device").As<Napi::String>();
if (device != "cpu")
{
model_type = config_object.Get("modelType").As<Napi::String>();
size_t mem = llmodel_required_mem(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem, device.c_str());
if (!success)
{
// https://github.com/nomic-ai/gpt4all/blob/3acbef14b7c2436fe033cae9036e695d77461a16/gpt4all-bindings/python/gpt4all/pyllmodel.py#L215
// Haven't implemented this but it is still open to contribution
std::cout << "WARNING: Failed to init GPU\n";
}
}
auto success = llmodel_loadModel(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
if (!success)
{
Napi::Error::New(env, "Failed to load model at given path").ThrowAsJavaScriptException();
return;
}
// optional
if (config_object.Has("model_type"))
{
type = config_object.Get("model_type").As<Napi::String>();
}
};
Napi::Value NodeModelWrapper::Load(const Napi::CallbackInfo &info)
{
auto env = info.Env();
auto success = llmodel_loadModel(GetInference(), model_file.c_str(), n_ctx, n_gpu_layers);
return Napi::Boolean::New(env, success);
}
Napi::Value NodeModelWrapper::InitGpu(const Napi::CallbackInfo &info)
{
auto env = info.Env();
auto device = info[0].As<Napi::String>().Utf8Value();
size_t mem_required = llmodel_required_mem(GetInference(), model_file.c_str(), n_ctx, n_gpu_layers);
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem_required, device.c_str());
return Napi::Boolean::New(env, success);
}
// NodeModelWrapper::~NodeModelWrapper() {
// if(GetInference() != nullptr) {
// std::cout << "Debug: deleting model\n";
// llmodel_model_destroy(inference_);
// std::cout << (inference_ == nullptr);
// }
// }
// void NodeModelWrapper::Finalize(Napi::Env env) {
// if(inference_ != nullptr) {
// std::cout << "Debug: deleting model\n";
//
// }
// }
Napi::Value NodeModelWrapper::IsModelLoaded(const Napi::CallbackInfo &info)
{
return Napi::Boolean::New(info.Env(), llmodel_isModelLoaded(GetInference()));
}
Napi::Value NodeModelWrapper::GetStateSize(const Napi::CallbackInfo &info)
Napi::Value NodeModelWrapper::StateSize(const Napi::CallbackInfo &info)
{
// Implement the binding for the stateSize method
return Napi::Number::New(info.Env(), static_cast<int64_t>(llmodel_get_state_size(GetInference())));
@@ -179,7 +220,7 @@ Napi::Array ChunkedFloatPtr(float *embedding_ptr, int embedding_size, int text_l
return result;
}
Napi::Value NodeModelWrapper::Embed(const Napi::CallbackInfo &info)
Napi::Value NodeModelWrapper::GenerateEmbedding(const Napi::CallbackInfo &info)
{
auto env = info.Env();
@@ -215,7 +256,7 @@ Napi::Value NodeModelWrapper::Embed(const Napi::CallbackInfo &info)
str_ptrs.push_back(text_arr[i].c_str());
str_ptrs.push_back(nullptr);
const char *_err = nullptr;
float *embeds = llmodel_embed(GetInference(), str_ptrs.data(), &embedding_size,
float *embeds = llmodel_embed(GetInference(), str_ptrs.data(), &embedding_size,
prefix.IsUndefined() ? nullptr : prefix.As<Napi::String>().Utf8Value().c_str(),
dimensionality, &token_count, do_mean, atlas, nullptr, &_err);
if (!embeds)
@@ -230,12 +271,9 @@ Napi::Value NodeModelWrapper::Embed(const Napi::CallbackInfo &info)
llmodel_free_embedding(embeds);
auto res = Napi::Object::New(env);
res.Set("n_prompt_tokens", token_count);
if (is_single_text)
{
if(is_single_text) {
res.Set("embeddings", embedmat.Get(static_cast<uint32_t>(0)));
}
else
{
} else {
res.Set("embeddings", embedmat);
}
@@ -270,7 +308,7 @@ Napi::Value NodeModelWrapper::Infer(const Napi::CallbackInfo &info)
llmodel_prompt_context promptContext = {.logits = nullptr,
.tokens = nullptr,
.n_past = 0,
.n_ctx = n_ctx,
.n_ctx = nCtx,
.n_predict = 4096,
.top_k = 40,
.top_p = 0.9f,
@@ -285,12 +323,6 @@ Napi::Value NodeModelWrapper::Infer(const Napi::CallbackInfo &info)
auto inputObject = info[1].As<Napi::Object>();
if (!inputObject.Has("promptTemplate"))
{
Napi::Error::New(info.Env(), "Missing Prompt Template").ThrowAsJavaScriptException();
return info.Env().Undefined();
}
if (inputObject.Has("logits") || inputObject.Has("tokens"))
{
Napi::Error::New(info.Env(), "Invalid input: 'logits' or 'tokens' properties are not allowed")
@@ -393,9 +425,9 @@ void NodeModelWrapper::SetThreadCount(const Napi::CallbackInfo &info)
Napi::Value NodeModelWrapper::GetName(const Napi::CallbackInfo &info)
{
return Napi::String::New(info.Env(), model_name);
return Napi::String::New(info.Env(), name);
}
Napi::Value NodeModelWrapper::GetThreadCount(const Napi::CallbackInfo &info)
Napi::Value NodeModelWrapper::ThreadCount(const Napi::CallbackInfo &info)
{
return Napi::Number::New(info.Env(), llmodel_threadCount(GetInference()));
}