mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-07-07 04:20:59 +00:00
feat: mem transformer
This commit is contained in:
parent
cfddd78eb4
commit
60f2f99cd7
2
gpt4all/models/lethe/__init__.py
Normal file
2
gpt4all/models/lethe/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from .configuration_lethe import LetheConfig
|
||||||
|
from .modeling_lethe import LetheForCausalLM
|
136
gpt4all/models/lethe/configuration_lethe.py
Normal file
136
gpt4all/models/lethe/configuration_lethe.py
Normal file
@ -0,0 +1,136 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" GPTNeoX model configuration"""
|
||||||
|
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||||
|
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
|
||||||
|
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class LetheConfig(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
|
||||||
|
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||||
|
with the defaults will yield a similar configuration to that of the GPTNeoX
|
||||||
|
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_size (`int`, *optional*, defaults to 50432):
|
||||||
|
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
|
||||||
|
`inputs_ids` passed when calling [`GPTNeoXModel`].
|
||||||
|
hidden_size (`int`, *optional*, defaults to 6144):
|
||||||
|
Dimension of the encoder layers and the pooler layer.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 44):
|
||||||
|
Number of hidden layers in the Transformer encoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 64):
|
||||||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||||||
|
intermediate_size (`int`, *optional*, defaults to 24576):
|
||||||
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||||||
|
rotary_pct (`float`, *optional*, defaults to 0.25):
|
||||||
|
percentage of hidden dimensions to allocate to rotary embeddings
|
||||||
|
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
||||||
|
base for computing rotary embeddings frequency
|
||||||
|
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
||||||
|
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
|
||||||
|
|
||||||
|
The dropout ratio for the hidden layer.
|
||||||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||||
|
just in case (e.g., 512 or 1024 or 2048).
|
||||||
|
initializer_range (`float`, *optional*, defaults to 1e-5):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||||
|
The epsilon used by the layer normalization layers.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||||
|
relevant if `config.is_decoder=True`.
|
||||||
|
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
||||||
|
speedup at large scales (e.g. 20B).
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
|
||||||
|
|
||||||
|
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
|
||||||
|
>>> configuration = GPTNeoXConfig()
|
||||||
|
|
||||||
|
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
|
||||||
|
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config # doctest: +SKIP
|
||||||
|
```"""
|
||||||
|
model_type = "gpt_neox"
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=50432,
|
||||||
|
hidden_size=6144,
|
||||||
|
num_hidden_layers=44,
|
||||||
|
num_attention_heads=64,
|
||||||
|
intermediate_size=24576,
|
||||||
|
hidden_act="gelu",
|
||||||
|
rotary_pct=0.25,
|
||||||
|
rotary_emb_base=10000,
|
||||||
|
classifier_dropout=0.1,
|
||||||
|
max_position_embeddings=2048,
|
||||||
|
initializer_range=0.02,
|
||||||
|
layer_norm_eps=1e-5,
|
||||||
|
use_cache=True,
|
||||||
|
bos_token_id=0,
|
||||||
|
eos_token_id=2,
|
||||||
|
tie_word_embeddings=False,
|
||||||
|
use_parallel_residual=True,
|
||||||
|
memory_attn_layer=9,
|
||||||
|
num_neighbors_to_retrieve=32,
|
||||||
|
num_neighbors_stored=128,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.intermediate_size = intermediate_size
|
||||||
|
self.hidden_act = hidden_act
|
||||||
|
self.rotary_pct = rotary_pct
|
||||||
|
self.rotary_emb_base = rotary_emb_base
|
||||||
|
self.classifier_dropout = classifier_dropout
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.layer_norm_eps = layer_norm_eps
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.tie_word_embeddings = tie_word_embeddings
|
||||||
|
self.use_parallel_residual = use_parallel_residual
|
||||||
|
|
||||||
|
# index of cross attention layer to add
|
||||||
|
self.memory_attn_layer = memory_attn_layer
|
||||||
|
self.num_neighbors_to_retrieve = num_neighbors_to_retrieve
|
||||||
|
self.num_neighbors_stored = num_neighbors_stored
|
849
gpt4all/models/lethe/modeling_lethe.py
Normal file
849
gpt4all/models/lethe/modeling_lethe.py
Normal file
@ -0,0 +1,849 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" PyTorch PythiaSeek model."""
|
||||||
|
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
|
||||||
|
import math
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch
|
||||||
|
import torch.utils.checkpoint
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import CrossEntropyLoss
|
||||||
|
|
||||||
|
from transformers import AutoModel
|
||||||
|
from transformers.activations import ACT2FN
|
||||||
|
from transformers.modeling_outputs import (
|
||||||
|
BaseModelOutputWithPast,
|
||||||
|
CausalLMOutputWithPast,
|
||||||
|
)
|
||||||
|
from transformers.modeling_utils import PreTrainedModel
|
||||||
|
from transformers.utils import logging
|
||||||
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
||||||
|
from gpt4all.models.lethe import LetheConfig
|
||||||
|
import hnswlib
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||||
|
"EleutherAI/gpt-neox-20b",
|
||||||
|
]
|
||||||
|
|
||||||
|
# TODO: understand why Phil only does this per batch and doens't persist across many batches
|
||||||
|
# TODO: k/v are stored per head and per token!!!
|
||||||
|
# reshape query, key, value into (bs * seq_len, num_attention_heads, head_size)
|
||||||
|
# for each head, store index of k/v for each token
|
||||||
|
|
||||||
|
|
||||||
|
class HNSWIndex:
|
||||||
|
def __init__(self, max_memories, dimension):
|
||||||
|
# num_memories will be batch size * num_neighbors
|
||||||
|
# can memmap this too like
|
||||||
|
self.index = hnswlib.Index(space="l2", dim=dimension)
|
||||||
|
self.index.init_index(max_elements=max_memories, ef_construction=50, M=16)
|
||||||
|
self.max_memories = max_memories
|
||||||
|
self.dimension = dimension
|
||||||
|
|
||||||
|
# if we want to allow for insertion of len(elements) > max_memories
|
||||||
|
# we need to figure out a way to get the most recent memories
|
||||||
|
self.idx_offset = 0
|
||||||
|
|
||||||
|
def query(self, query, k=1):
|
||||||
|
# hack what should we do here?
|
||||||
|
if self.index.get_current_count() == 0:
|
||||||
|
return np.ones((query.shape[0], k, query.shape[1]), dtype=np.float32)
|
||||||
|
|
||||||
|
assert query.ndim == 2
|
||||||
|
bs_seq_len, _ = query.shape
|
||||||
|
|
||||||
|
labels, _ = self.index.knn_query(query, k=k)
|
||||||
|
neighbors = torch.tensor(self.index.get_items(labels.reshape(-1)))
|
||||||
|
neighbors = neighbors.reshape((bs_seq_len, k, query.shape[1]))
|
||||||
|
|
||||||
|
assert neighbors.ndim == 3
|
||||||
|
assert neighbors.shape[0] == bs_seq_len
|
||||||
|
|
||||||
|
return neighbors
|
||||||
|
|
||||||
|
def add(self, memories):
|
||||||
|
assert memories.ndim == 2
|
||||||
|
bs_seq_len, _ = memories.shape
|
||||||
|
|
||||||
|
ids = np.arange(self.idx_offset, self.idx_offset + bs_seq_len)
|
||||||
|
|
||||||
|
self.index.add_items(memories, ids)
|
||||||
|
|
||||||
|
self.idx_offset += bs_seq_len
|
||||||
|
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
self.index = hnswlib.Index(space="l2", dim=self.dimension)
|
||||||
|
self.index.init_index(max_elements=self.max_memories, ef_construction=50, M=16)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryIndex:
|
||||||
|
def __init__(self, hidden_dim, num_mems, nheads):
|
||||||
|
# we store an index for each k/v for each head
|
||||||
|
self.key_indices = [HNSWIndex(num_mems, hidden_dim) for _ in range(nheads)]
|
||||||
|
self.value_indices = [HNSWIndex(num_mems, hidden_dim) for _ in range(nheads)]
|
||||||
|
self.nheads = nheads
|
||||||
|
|
||||||
|
def add(self, keys, values):
|
||||||
|
# k/v are (bs, num_attention_heads, seq_len, head_size)
|
||||||
|
reshaped_keys = keys.reshape(keys.shape[0] * keys.shape[2], keys.shape[1], keys.shape[3])
|
||||||
|
reshaped_values = values.reshape(values.shape[0] * values.shape[2], values.shape[1], values.shape[3])
|
||||||
|
|
||||||
|
for head in range(self.nheads):
|
||||||
|
print(f"adding head {head}")
|
||||||
|
self.key_indices[head].add(reshaped_keys[:, head, :])
|
||||||
|
self.value_indices[head].add(reshaped_values[:, head, :])
|
||||||
|
|
||||||
|
|
||||||
|
def knn_query(self, query, k=1):
|
||||||
|
reshaped_query = query.reshape(query.shape[0] * query.shape[2], query.shape[1], query.shape[3])
|
||||||
|
|
||||||
|
mem_keys = []
|
||||||
|
mem_values = []
|
||||||
|
|
||||||
|
# this is prob so so slow
|
||||||
|
for head in range(self.nheads):
|
||||||
|
knn_keys = self.key_indices[head].query(reshaped_query[:, head, :], k=k)
|
||||||
|
knn_values = self.value_indices[head].query(reshaped_query[:, head, :], k=k)
|
||||||
|
|
||||||
|
mem_keys.append(knn_keys)
|
||||||
|
mem_values.append(knn_values)
|
||||||
|
|
||||||
|
mem_keys = torch.from_numpy(np.stack(mem_keys, axis=1))
|
||||||
|
# (bs, num_attention_heads, seq_len, k, head_size)
|
||||||
|
mem_keys = mem_keys.view(query.shape[:-1] + (k,) + (query.shape[-1],))
|
||||||
|
|
||||||
|
mem_values = torch.from_numpy(np.stack(mem_values, axis=1))
|
||||||
|
# (bs, num_attention_heads, seq_len, k, head_size)
|
||||||
|
mem_values = mem_values.view(query.shape[:-1] + (k,) + (query.shape[-1],))
|
||||||
|
|
||||||
|
return mem_keys, mem_values
|
||||||
|
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
for head in range(self.nheads):
|
||||||
|
self.key_indices[head].reset()
|
||||||
|
self.value_indices[head].reset()
|
||||||
|
|
||||||
|
|
||||||
|
class LethePreTrainedModel(PreTrainedModel):
|
||||||
|
"""
|
||||||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||||
|
models.
|
||||||
|
"""
|
||||||
|
|
||||||
|
config_class = LetheConfig
|
||||||
|
base_model_prefix = "gpt_neox"
|
||||||
|
supports_gradient_checkpointing = True
|
||||||
|
_no_split_modules = ["PythiaSeekLayer"]
|
||||||
|
|
||||||
|
def _init_weights(self, module):
|
||||||
|
"""Initialize the weights"""
|
||||||
|
if isinstance(module, nn.Linear):
|
||||||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||||
|
if module.bias is not None:
|
||||||
|
module.bias.data.zero_()
|
||||||
|
elif isinstance(module, nn.Embedding):
|
||||||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||||
|
if module.padding_idx is not None:
|
||||||
|
module.weight.data[module.padding_idx].zero_()
|
||||||
|
elif isinstance(module, nn.LayerNorm):
|
||||||
|
module.bias.data.zero_()
|
||||||
|
module.weight.data.fill_(1.0)
|
||||||
|
|
||||||
|
def _set_gradient_checkpointing(self, module, value=False):
|
||||||
|
if isinstance(module, LetheModel):
|
||||||
|
module.gradient_checkpointing = value
|
||||||
|
|
||||||
|
|
||||||
|
class LetheAttention(nn.Module):
|
||||||
|
def __init__(self, config, memory_attention=False, index=None):
|
||||||
|
super().__init__()
|
||||||
|
self.num_attention_heads = config.num_attention_heads
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
self.head_size = self.hidden_size // self.num_attention_heads
|
||||||
|
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
||||||
|
max_positions = config.max_position_embeddings
|
||||||
|
self.register_buffer(
|
||||||
|
"bias",
|
||||||
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
||||||
|
1, 1, max_positions, max_positions
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
||||||
|
self.rotary_emb = RotaryEmbedding(
|
||||||
|
self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base
|
||||||
|
)
|
||||||
|
self.register_buffer(
|
||||||
|
"norm_factor",
|
||||||
|
torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()),
|
||||||
|
persistent=False,
|
||||||
|
)
|
||||||
|
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
||||||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||||
|
self.memory = False
|
||||||
|
|
||||||
|
if memory_attention:
|
||||||
|
self.memory = True
|
||||||
|
self.alpha = nn.Parameter(torch.zeros(self.num_attention_heads))
|
||||||
|
self.num_neighbors = config.num_neighbors_to_retrieve
|
||||||
|
# for testing, just using np array since it's easy
|
||||||
|
self.index = index
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.FloatTensor,
|
||||||
|
attention_mask: torch.FloatTensor,
|
||||||
|
position_ids: torch.LongTensor,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
use_cache: Optional[bool] = False,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
):
|
||||||
|
has_layer_past = layer_past is not None
|
||||||
|
|
||||||
|
# Compute QKV
|
||||||
|
# Attention heads [batch, seq_len, hidden_size]
|
||||||
|
# --> [batch, seq_len, (np * 3 * head_size)]
|
||||||
|
bs, seq_len, hidden_size = hidden_states.size()
|
||||||
|
qkv = self.query_key_value(hidden_states)
|
||||||
|
|
||||||
|
# [batch, seq_len, (num_heads * 3 * head_size)]
|
||||||
|
# --> [batch, seq_len, num_heads, 3 * head_size]
|
||||||
|
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
||||||
|
qkv = qkv.view(*new_qkv_shape)
|
||||||
|
|
||||||
|
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
||||||
|
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
||||||
|
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
||||||
|
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
||||||
|
|
||||||
|
# Compute rotary embeddings on rotary_ndims
|
||||||
|
query_rot = query[..., : self.rotary_ndims]
|
||||||
|
query_pass = query[..., self.rotary_ndims :]
|
||||||
|
key_rot = key[..., : self.rotary_ndims]
|
||||||
|
key_pass = key[..., self.rotary_ndims :]
|
||||||
|
|
||||||
|
# Compute token offset for rotary embeddings (when decoding)
|
||||||
|
seq_len = key.shape[-2]
|
||||||
|
if has_layer_past:
|
||||||
|
seq_len += layer_past[0].shape[-2]
|
||||||
|
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
||||||
|
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
||||||
|
query = torch.cat((query, query_pass), dim=-1)
|
||||||
|
key = torch.cat((key, key_pass), dim=-1)
|
||||||
|
|
||||||
|
# Cache QKV values
|
||||||
|
if has_layer_past:
|
||||||
|
past_key = layer_past[0]
|
||||||
|
past_value = layer_past[1]
|
||||||
|
key = torch.cat((past_key, key), dim=-2)
|
||||||
|
value = torch.cat((past_value, value), dim=-2)
|
||||||
|
present = (key, value) if use_cache else None
|
||||||
|
|
||||||
|
# Compute attention
|
||||||
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||||
|
|
||||||
|
if self.memory:
|
||||||
|
# get knns
|
||||||
|
# [batch, knn, num_attention_heads, seq_len, head_size]
|
||||||
|
knn_keys, knn_values = self.index.knn_query(query.detach().numpy(), k=self.num_neighbors)
|
||||||
|
mem_attn = self._mem_attn(query, knn_keys, knn_values, attention_mask, head_mask)
|
||||||
|
|
||||||
|
expanded_alpha = self.alpha[None, :, None, None]
|
||||||
|
attn_output = (attn_output * (1 - expanded_alpha)) + (mem_attn * expanded_alpha)
|
||||||
|
|
||||||
|
self.index.add(key.detach().numpy(), value.detach().numpy())
|
||||||
|
|
||||||
|
# Reshape outputs
|
||||||
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
||||||
|
attn_output = self.dense(attn_output)
|
||||||
|
|
||||||
|
outputs = (attn_output, present)
|
||||||
|
if output_attentions:
|
||||||
|
outputs += (attn_weights,)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||||
|
"""
|
||||||
|
Splits hidden dim into attn_head_size and num_attention_heads
|
||||||
|
"""
|
||||||
|
# tensor: [bs, seq_len, hidden_size]
|
||||||
|
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
||||||
|
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||||
|
tensor = tensor.view(new_shape)
|
||||||
|
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
||||||
|
tensor = tensor.permute(0, 2, 1, 3)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||||
|
"""
|
||||||
|
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
||||||
|
"""
|
||||||
|
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
||||||
|
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||||
|
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||||
|
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
||||||
|
# -> [bs, seq_len, hidden_size]
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
def _mem_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||||
|
# q: [bs, num_attention_heads, seq_len, attn_head_size]
|
||||||
|
# k,v: [bs, num_attention_heads, seq_len, knn, attn_head_size]
|
||||||
|
|
||||||
|
attn_scores = torch.einsum("bhsd, bhsnd-> bshn", query, key)
|
||||||
|
# attn_scores: [bs, seq_len, num_attention_heads, knn]
|
||||||
|
attn_scores = attn_scores / self.norm_factor
|
||||||
|
|
||||||
|
# softmax over knns
|
||||||
|
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
||||||
|
attn_weights = attn_weights.to(value.dtype)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
# Apply the attention mask
|
||||||
|
attn_scores = attn_scores + attention_mask
|
||||||
|
|
||||||
|
# Mask heads if we want to
|
||||||
|
if head_mask is not None:
|
||||||
|
attn_weights = attn_weights * head_mask
|
||||||
|
|
||||||
|
# attn_output: [bs, num_attention_heads, seq_len, attn_head_size]
|
||||||
|
attn_output = torch.einsum("bshn, bhsnd-> bhsd", attn_scores, value)
|
||||||
|
return attn_output
|
||||||
|
|
||||||
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||||
|
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
||||||
|
# compute causal mask from causal mask buffer
|
||||||
|
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
||||||
|
key_length = key.size(-2)
|
||||||
|
|
||||||
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
||||||
|
|
||||||
|
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
||||||
|
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
||||||
|
attn_scores = torch.zeros(
|
||||||
|
batch_size * num_attention_heads,
|
||||||
|
query_length,
|
||||||
|
key_length,
|
||||||
|
dtype=query.dtype,
|
||||||
|
device=key.device,
|
||||||
|
)
|
||||||
|
attn_scores = torch.baddbmm(
|
||||||
|
attn_scores,
|
||||||
|
query,
|
||||||
|
key.transpose(1, 2),
|
||||||
|
beta=1.0,
|
||||||
|
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
|
||||||
|
)
|
||||||
|
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
||||||
|
|
||||||
|
mask_value = torch.finfo(attn_scores.dtype).min
|
||||||
|
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
||||||
|
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
||||||
|
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
||||||
|
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
# Apply the attention mask
|
||||||
|
attn_scores = attn_scores + attention_mask
|
||||||
|
|
||||||
|
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
||||||
|
attn_weights = attn_weights.to(value.dtype)
|
||||||
|
|
||||||
|
# Mask heads if we want to
|
||||||
|
if head_mask is not None:
|
||||||
|
attn_weights = attn_weights * head_mask
|
||||||
|
|
||||||
|
attn_output = torch.matmul(attn_weights, value)
|
||||||
|
return attn_output, attn_weights
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class RotaryEmbedding(torch.nn.Module):
|
||||||
|
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
|
||||||
|
super().__init__()
|
||||||
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||||||
|
self.register_buffer("inv_freq", inv_freq)
|
||||||
|
|
||||||
|
# Build here to make `torch.jit.trace` work.
|
||||||
|
self.max_seq_len_cached = max_position_embeddings
|
||||||
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
||||||
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||||
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||||||
|
self.cos_cached = emb.cos()[None, None, :, :]
|
||||||
|
self.sin_cached = emb.sin()[None, None, :, :]
|
||||||
|
|
||||||
|
def forward(self, x, seq_len=None):
|
||||||
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||||
|
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
||||||
|
if seq_len > self.max_seq_len_cached:
|
||||||
|
self.max_seq_len_cached = seq_len
|
||||||
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
||||||
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||||
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||||
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
||||||
|
self.cos_cached = emb.cos()[None, None, :, :]
|
||||||
|
self.sin_cached = emb.sin()[None, None, :, :]
|
||||||
|
return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device)
|
||||||
|
|
||||||
|
|
||||||
|
def rotate_half(x):
|
||||||
|
"""Rotates half the hidden dims of the input."""
|
||||||
|
x1 = x[..., : x.shape[-1] // 2]
|
||||||
|
x2 = x[..., x.shape[-1] // 2 :]
|
||||||
|
return torch.cat((-x2, x1), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||||
|
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
||||||
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
||||||
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||||
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||||
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||||
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||||
|
return q_embed, k_embed
|
||||||
|
|
||||||
|
|
||||||
|
class LetheMLP(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||||
|
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||||
|
self.act = ACT2FN[config.hidden_act]
|
||||||
|
|
||||||
|
def forward(self, hidden_states):
|
||||||
|
hidden_states = self.dense_h_to_4h(hidden_states)
|
||||||
|
hidden_states = self.act(hidden_states)
|
||||||
|
hidden_states = self.dense_4h_to_h(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class LetheLayer(nn.Module):
|
||||||
|
def __init__(self, config, memory_attention=False, index=None):
|
||||||
|
super().__init__()
|
||||||
|
self.use_parallel_residual = config.use_parallel_residual
|
||||||
|
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||||
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||||
|
self.attention = LetheAttention(config, memory_attention=memory_attention, index=index)
|
||||||
|
self.mlp = LetheMLP(config)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: Optional[torch.FloatTensor],
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = False,
|
||||||
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
):
|
||||||
|
ln_hidden_states = self.input_layernorm(hidden_states)
|
||||||
|
attention_layer_outputs = self.attention(
|
||||||
|
ln_hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
layer_past=layer_past,
|
||||||
|
head_mask=head_mask,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
||||||
|
outputs = attention_layer_outputs[1:]
|
||||||
|
|
||||||
|
if self.use_parallel_residual:
|
||||||
|
# pseudocode:
|
||||||
|
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
||||||
|
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
||||||
|
hidden_states = mlp_output + attn_output + hidden_states
|
||||||
|
else:
|
||||||
|
# pseudocode:
|
||||||
|
# x = x + attn(ln1(x))
|
||||||
|
# x = x + mlp(ln2(x))
|
||||||
|
attn_output = attn_output + hidden_states
|
||||||
|
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
||||||
|
hidden_states = mlp_output + attn_output
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
outputs = (hidden_states,) + outputs
|
||||||
|
else:
|
||||||
|
outputs = (hidden_states,) + outputs[1:]
|
||||||
|
|
||||||
|
return outputs # hidden_states, present, (attentions)
|
||||||
|
|
||||||
|
|
||||||
|
class LetheModel(LethePreTrainedModel):
|
||||||
|
def __init__(self, config, index):
|
||||||
|
super().__init__(config)
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||||
|
|
||||||
|
self.layers = nn.ModuleList([LetheLayer(config,
|
||||||
|
memory_attention=i+1 == config.memory_attn_layer,
|
||||||
|
index=index if i+1 == config.memory_attn_layer else None)
|
||||||
|
for i in range(config.num_hidden_layers)])
|
||||||
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||||
|
|
||||||
|
self.gradient_checkpointing = False
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
def get_input_embeddings(self):
|
||||||
|
return self.embed_in
|
||||||
|
|
||||||
|
def set_input_embeddings(self, value):
|
||||||
|
self.embed_in = value
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
r"""
|
||||||
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||||
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||||
|
use_cache (`bool`, *optional*):
|
||||||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||||
|
`past_key_values`).
|
||||||
|
"""
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
|
||||||
|
if input_ids is not None and inputs_embeds is not None:
|
||||||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||||
|
elif input_ids is not None:
|
||||||
|
input_shape = input_ids.size()
|
||||||
|
elif inputs_embeds is not None:
|
||||||
|
input_shape = inputs_embeds.size()[:-1]
|
||||||
|
else:
|
||||||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||||
|
|
||||||
|
batch_size, seq_length = input_shape
|
||||||
|
|
||||||
|
if past_key_values is None:
|
||||||
|
past_length = 0
|
||||||
|
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
||||||
|
else:
|
||||||
|
past_length = past_key_values[0][0].size(-2)
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||||
|
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
||||||
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||||
|
else:
|
||||||
|
position_ids = position_ids.view(-1, seq_length).long()
|
||||||
|
|
||||||
|
# Attention mask.
|
||||||
|
if attention_mask is not None:
|
||||||
|
assert batch_size > 0, "batch_size has to be defined and > 0"
|
||||||
|
attention_mask = attention_mask.view(batch_size, -1)
|
||||||
|
# We create a 3D attention mask from a 2D tensor mask.
|
||||||
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||||
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||||
|
# this attention mask is more simple than the triangular masking of causal attention
|
||||||
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||||
|
attention_mask = attention_mask[:, None, None, :]
|
||||||
|
|
||||||
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||||
|
# masked positions, this operation will create a tensor which is 0.0 for
|
||||||
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
||||||
|
# Since we are adding it to the raw scores before the softmax, this is
|
||||||
|
# effectively the same as removing these entirely.
|
||||||
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||||
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
||||||
|
|
||||||
|
# Prepare head mask if needed
|
||||||
|
# 1.0 in head_mask indicate we keep the head
|
||||||
|
# attention_probs has shape bsz x n_heads x N x N
|
||||||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_in(input_ids)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
if use_cache:
|
||||||
|
logger.warning(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
presents = () if use_cache else None
|
||||||
|
all_attentions = () if output_attentions else None
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
|
||||||
|
def create_custom_forward(module):
|
||||||
|
def custom_forward(*inputs):
|
||||||
|
# None for layer_past
|
||||||
|
return module(*inputs, use_cache, None, output_attentions)
|
||||||
|
|
||||||
|
return custom_forward
|
||||||
|
|
||||||
|
outputs = torch.utils.checkpoint.checkpoint(
|
||||||
|
create_custom_forward(layer),
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
head_mask[i],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
outputs = layer(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask[i],
|
||||||
|
layer_past=layer_past,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
hidden_states = outputs[0]
|
||||||
|
if use_cache is True:
|
||||||
|
presents = presents + (outputs[1],)
|
||||||
|
if output_attentions:
|
||||||
|
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
||||||
|
|
||||||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||||||
|
# Add last hidden state
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
||||||
|
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=presents,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class LetheForCausalLM(LethePreTrainedModel):
|
||||||
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||||
|
|
||||||
|
def __init__(self, config, index):
|
||||||
|
super().__init__(config)
|
||||||
|
|
||||||
|
self.gpt_neox = LetheModel(config, index)
|
||||||
|
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||||
|
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
def get_output_embeddings(self):
|
||||||
|
return self.embed_out
|
||||||
|
|
||||||
|
def set_output_embeddings(self, new_embeddings):
|
||||||
|
self.embed_out = new_embeddings
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor,
|
||||||
|
token_type_ids: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
labels: Optional[torch.LongTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||||
|
r"""
|
||||||
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||||
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||||
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
||||||
|
only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||||
|
|
||||||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
||||||
|
`past_key_values` input) to speed up sequential decoding.
|
||||||
|
|
||||||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||||
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||||
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||||||
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
||||||
|
use_cache (`bool`, *optional*):
|
||||||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||||
|
`past_key_values`).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import AutoTokenizer, PythiaSeekForCausalLM, PythiaSeekConfig
|
||||||
|
>>> import torch
|
||||||
|
|
||||||
|
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||||
|
>>> config = PythiaSeekConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||||
|
>>> config.is_decoder = True
|
||||||
|
>>> model = PythiaSeekForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
||||||
|
|
||||||
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||||||
|
>>> outputs = model(**inputs)
|
||||||
|
|
||||||
|
>>> prediction_logits = outputs.logits
|
||||||
|
```"""
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
# memories are where token_type_ids == 0
|
||||||
|
memory_mask = token_type_ids == 0
|
||||||
|
# should be shape (num_memories, sequence_length)
|
||||||
|
memories = input_ids[memory_mask]
|
||||||
|
with torch.no_grad():
|
||||||
|
# store memories but we don't back prop
|
||||||
|
self.gpt_neox(memories,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
questions = input_ids[~memory_mask]
|
||||||
|
answers = labels[~memory_mask]
|
||||||
|
|
||||||
|
outputs = self.gpt_neox(
|
||||||
|
questions,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = outputs[0]
|
||||||
|
lm_logits = self.embed_out(hidden_states)
|
||||||
|
|
||||||
|
lm_loss = None
|
||||||
|
if answers is not None:
|
||||||
|
# move labels to correct device to enable model parallelism
|
||||||
|
answers = answers.to(lm_logits.device)
|
||||||
|
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||||
|
shift_logits = lm_logits[:, :-1, :].contiguous()
|
||||||
|
answers = answers[:, 1:].contiguous()
|
||||||
|
loss_fct = CrossEntropyLoss()
|
||||||
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), answers.view(-1))
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
output = (lm_logits,) + outputs[1:]
|
||||||
|
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||||
|
|
||||||
|
return CausalLMOutputWithPast(
|
||||||
|
loss=lm_loss,
|
||||||
|
logits=lm_logits,
|
||||||
|
past_key_values=outputs.past_key_values,
|
||||||
|
hidden_states=outputs.hidden_states,
|
||||||
|
attentions=outputs.attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
def prepare_inputs_for_generation(
|
||||||
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||||
|
):
|
||||||
|
input_shape = input_ids.shape
|
||||||
|
|
||||||
|
# cut decoder_input_ids if past is used
|
||||||
|
if past_key_values and past_key_values[0] is not None:
|
||||||
|
input_ids = input_ids[:, -1:]
|
||||||
|
|
||||||
|
position_ids = kwargs.get("position_ids", None)
|
||||||
|
if attention_mask is not None and position_ids is None:
|
||||||
|
# create position_ids on the fly for batch generation
|
||||||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||||
|
if past_key_values:
|
||||||
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||||
|
|
||||||
|
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||||
|
if attention_mask is None:
|
||||||
|
attention_mask = input_ids.new_ones(input_shape)
|
||||||
|
|
||||||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||||
|
if inputs_embeds is not None and past_key_values is None:
|
||||||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||||
|
else:
|
||||||
|
model_inputs = {"input_ids": input_ids}
|
||||||
|
|
||||||
|
model_inputs.update(
|
||||||
|
{
|
||||||
|
"attention_mask": attention_mask,
|
||||||
|
"past_key_values": past_key_values,
|
||||||
|
"position_ids": position_ids,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
def _reorder_cache(self, past_key_values, beam_idx):
|
||||||
|
reordered_past = ()
|
||||||
|
for layer_past in past_key_values:
|
||||||
|
reordered_past += (
|
||||||
|
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
||||||
|
)
|
||||||
|
return reordered_past
|
63
gpt4all/models/lethe/test_lethe.py
Normal file
63
gpt4all/models/lethe/test_lethe.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
import torch
|
||||||
|
from gpt4all.models import LetheForCausalLM, LetheConfig
|
||||||
|
from gpt4all.models.lethe.modeling_lethe import MemoryIndex
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
|
||||||
|
# seed torch
|
||||||
|
|
||||||
|
torch.manual_seed(0)
|
||||||
|
|
||||||
|
config = LetheConfig(num_hidden_layers=12,
|
||||||
|
hidden_size=1024,
|
||||||
|
intermediate_size=4096,
|
||||||
|
num_attention_heads=8,
|
||||||
|
cross_attn_layer=9,
|
||||||
|
nn_index_path="/home/paperspace/gpt4all/gpt4all/train",
|
||||||
|
num_neighbors_stored=32768,
|
||||||
|
num_neighbors_to_retrieve=2,
|
||||||
|
)
|
||||||
|
print("loaded config")
|
||||||
|
|
||||||
|
print("loading model")
|
||||||
|
dimension = config.max_position_embeddings * config.hidden_size
|
||||||
|
head_size = config.hidden_size // config.num_attention_heads
|
||||||
|
index = MemoryIndex(head_size,
|
||||||
|
64_000,
|
||||||
|
config.num_attention_heads
|
||||||
|
)
|
||||||
|
model = LetheForCausalLM(config, index)
|
||||||
|
print("loaded model")
|
||||||
|
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-1b")
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
tokenizer.model_max_length = 2048
|
||||||
|
|
||||||
|
question = "Where was George Washington born?"
|
||||||
|
answer = "Virginia"
|
||||||
|
|
||||||
|
contexts = ["The Washington family was a wealthy Virginia planter family that had made its fortune through land speculation and the cultivation of tobacco.",
|
||||||
|
"George Washington was born on February 22, 1732,[b] at Popes Creek in Westmoreland County, in the British colony of Virginia,[18] and was the first of six children of Augustine and Mary Ball Washington.",
|
||||||
|
"His father was a justice of the peace and a prominent public figure who had four additional children from his first marriage to Jane Butler.[20] The family moved to Little Hunting Creek in 1735"]
|
||||||
|
|
||||||
|
contexts_encoded = tokenizer(contexts, padding="max_length", truncation=True, return_tensors="pt")
|
||||||
|
tokenized_input = tokenizer(question + "\n" + answer, return_tensors="pt", padding="max_length", truncation=True)
|
||||||
|
|
||||||
|
inputs = torch.concatenate([contexts_encoded["input_ids"], tokenized_input["input_ids"]], axis=0)
|
||||||
|
token_type_ids = torch.tensor([[0] * len(contexts_encoded["input_ids"]) + [1] * len(tokenized_input["input_ids"])]).squeeze()
|
||||||
|
|
||||||
|
question_len = len(tokenizer(question + "\n", return_tensors="pt")["input_ids"][0])
|
||||||
|
|
||||||
|
labels = inputs.clone()
|
||||||
|
labels[:-1] = -100
|
||||||
|
labels[-1, :question_len] = -100
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print("Running model")
|
||||||
|
outputs = model(input_ids=inputs, token_type_ids=token_type_ids, labels=labels)
|
||||||
|
|
||||||
|
print(outputs)
|
||||||
|
print(outputs.logits.shape)
|
||||||
|
|
||||||
|
index.reset()
|
Loading…
Reference in New Issue
Block a user