mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-09-05 10:30:29 +00:00
fix: update train scripts and configs for other models (#1164)
* feat: falcon config * feat: mpt config * chore: gitignore * refactor: step calculation * fix: attention mask + shuffle on epoch end * fix: return tensors * fix: wait for everyone * chore: config * chore: ds config * fix: remove ccols * fix: logging and saving * chore: add einops
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler
|
||||
import torch
|
||||
from torch.optim import AdamW
|
||||
from argparse import ArgumentParser
|
||||
@@ -42,7 +42,7 @@ def train(accelerator, config):
|
||||
accelerator.print(config)
|
||||
accelerator.print(f"Using {accelerator.num_processes} GPUs")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'], use_fast=False)
|
||||
# if no pad token, set it to eos
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
@@ -53,6 +53,7 @@ def train(accelerator, config):
|
||||
|
||||
|
||||
checkpoint = config["gradient_checkpointing"]
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
||||
use_cache=False if checkpoint else True,
|
||||
trust_remote_code=True)
|
||||
@@ -86,7 +87,7 @@ def train(accelerator, config):
|
||||
# decay to min_lr instead of 0
|
||||
lr_ratio = config["min_lr"] / config["lr"]
|
||||
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * (config["num_epochs"])
|
||||
# instead of decaying to zero, decay to ratio of min_lr / lr
|
||||
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
||||
accelerator.print(f"Total training steps: {total_num_steps}")
|
||||
@@ -104,7 +105,7 @@ def train(accelerator, config):
|
||||
)
|
||||
else:
|
||||
scheduler = DummyScheduler(
|
||||
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
||||
optimizer, total_num_steps=total_num_steps, warmup_num_steps=config["warmup_steps"]
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
||||
@@ -117,26 +118,34 @@ def train(accelerator, config):
|
||||
if config["checkpoint"]:
|
||||
accelerator.load_state(config["checkpoint"])
|
||||
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
|
||||
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
|
||||
path = os.path.basename(config["checkpoint"])
|
||||
training_difference = os.path.splitext(path)[0]
|
||||
resume_step = int(training_difference.replace("step_", ""))
|
||||
accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
accelerator.print(f"Resuming from step {resume_step}")
|
||||
else:
|
||||
resume_step = 0
|
||||
|
||||
|
||||
# log gradients
|
||||
if accelerator.is_main_process and config["wandb"]:
|
||||
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
|
||||
|
||||
for epoch in range(config["num_epochs"]):
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
for epoch in range(0, config["num_epochs"]):
|
||||
train_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||
for step, batch in enumerate(tqdm(train_dataloader)):
|
||||
curr_step = epoch * len(train_dataloader) + step
|
||||
model.train()
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
|
||||
# gather loss before backprop in case of gradient accumulation
|
||||
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
|
||||
if config["wandb"]:
|
||||
accelerator.log({"loss": torch.mean(loss_values["loss"]).item()}, step=curr_step)
|
||||
train_loss.update(loss_values["loss"])
|
||||
|
||||
loss = loss / gradient_accumulation_steps
|
||||
@@ -144,9 +153,8 @@ def train(accelerator, config):
|
||||
# get gradient norm of all params
|
||||
|
||||
# log LR in case something weird happens
|
||||
if step > 0 and step % (config["eval_every"] // 10) == 0:
|
||||
if step > 0 and step % (config["log_lr_every"]) == 0:
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
|
||||
|
||||
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||
@@ -156,7 +164,6 @@ def train(accelerator, config):
|
||||
|
||||
|
||||
if step > 0 and step % config["save_every"] == 0:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
||||
|
||||
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
||||
@@ -170,7 +177,6 @@ def train(accelerator, config):
|
||||
}
|
||||
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({**log_train, **log_val}, step=curr_step)
|
||||
|
||||
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
|
||||
@@ -181,8 +187,14 @@ def train(accelerator, config):
|
||||
|
||||
accelerator.print(f"Epoch {epoch} finished")
|
||||
accelerator.print(f"Pushing to HF hub")
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/epoch_{epoch}",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
try:
|
||||
if accelerator.is_main_process:
|
||||
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
||||
@@ -191,21 +203,16 @@ def train(accelerator, config):
|
||||
accelerator.print(e)
|
||||
accelerator.print(f"Failed to push to hub")
|
||||
|
||||
|
||||
if config["num_epochs"] > 1:
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/epoch_{epoch}",
|
||||
f"{config['output_dir']}/final",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/final",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
Reference in New Issue
Block a user