fix: lr schedule

This commit is contained in:
Zach Nussbaum 2023-05-01 21:38:01 +00:00
parent 8a917ad4e1
commit 80d810322a
2 changed files with 3 additions and 66 deletions

View File

@ -117,69 +117,6 @@ def load_data(config, tokenizer):
return train_dataloader, val_dataloader
def load_retrieval_augmented_data(config, tokenizer):
dataset_path = config["dataset_path"]
index_path = config['index_path']
#TODO this should precache at some point
index = hnswlib.Index(space=config['index_space'], dim=config['index_dim'])
index.load_index(index_path)
if os.path.exists(dataset_path):
if os.path.isdir(dataset_path):
files = glob.glob(os.path.join(dataset_path, "*_clean.jsonl"))
else:
files = [dataset_path]
print(f"Reading files {files}")
dataset = load_dataset("json", data_files=files, split="train")
else:
dataset = load_dataset(dataset_path, split="train")
dataset = dataset.train_test_split(test_size=.05, seed=config["seed"])
train_dataset, val_dataset = dataset["train"], dataset["test"]
if config["streaming"] is False:
kwargs = {"num_proc": config["num_proc"]}
else:
kwargs = {}
# tokenize inputs and return labels and attention mask
train_dataset = train_dataset.map(
lambda ele: tokenize_inputs(config, tokenizer, ele),
batched=True,
remove_columns=["source", "prompt"],
**kwargs
)
val_dataset = val_dataset.map(
lambda ele: tokenize_inputs(config, tokenizer, ele),
batched=True,
remove_columns=["source", "prompt"],
**kwargs
)
train_dataset = train_dataset.with_format("torch")
val_dataset = val_dataset.with_format("torch")
# create dataloader with default data collator since we already have labels
train_dataloader = DataLoader(
train_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
)
val_dataloader = DataLoader(
val_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
)
return train_dataloader, val_dataloader
def load_data_for_inference(config, tokenizer):

View File

@ -1,5 +1,5 @@
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler
import torch
from torch.optim import AdamW
from argparse import ArgumentParser
@ -7,7 +7,7 @@ from gpt4all.utils.read import read_config
from accelerate import Accelerator
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
from peft import get_peft_model, LoraConfig, TaskType
from gpt4all.utils.data import load_data
from gpt4all.data.instruction_tuning_dataloader import load_data
from torchmetrics import MeanMetric
from tqdm import tqdm
import wandb
@ -104,7 +104,7 @@ def train(accelerator, config):
)
else:
scheduler = DummyScheduler(
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
optimizer, total_num_steps=total_num_steps, warmup_num_steps=config["warmup_steps"]
)
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(