chat: major UI redesign for v3.0.0 (#2396)

Signed-off-by: Adam Treat <treat.adam@gmail.com>
Signed-off-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
AT
2024-06-24 18:49:23 -04:00
committed by GitHub
parent 1272b694ae
commit 9273b49b62
111 changed files with 8540 additions and 7879 deletions

View File

@@ -1,6 +1,7 @@
#include "embllm.h"
#include "modellist.h"
#include "mysettings.h"
#include "../gpt4all-backend/llmodel.h"
@@ -13,8 +14,8 @@
#include <QJsonArray>
#include <QJsonDocument>
#include <QJsonObject>
#include <QJsonValue>
#include <QList>
#include <QMutexLocker>
#include <QNetworkAccessManager>
#include <QNetworkReply>
#include <QNetworkRequest>
@@ -24,16 +25,20 @@
#include <QtLogging>
#include <exception>
#include <string>
#include <utility>
using namespace Qt::Literals::StringLiterals;
static const QString EMBEDDING_MODEL_NAME = u"nomic-embed-text-v1.5"_s;
static const QString LOCAL_EMBEDDING_MODEL = u"nomic-embed-text-v1.5.f16.gguf"_s;
EmbeddingLLMWorker::EmbeddingLLMWorker()
: QObject(nullptr)
, m_networkManager(new QNetworkAccessManager(this))
, m_model(nullptr)
, m_stopGenerating(false)
{
moveToThread(&m_workerThread);
connect(this, &EmbeddingLLMWorker::requestAtlasQueryEmbedding, this, &EmbeddingLLMWorker::atlasQueryEmbeddingRequested);
connect(this, &EmbeddingLLMWorker::finished, &m_workerThread, &QThread::quit, Qt::DirectConnection);
m_workerThread.setObjectName("embedding");
m_workerThread.start();
@@ -58,44 +63,31 @@ void EmbeddingLLMWorker::wait()
bool EmbeddingLLMWorker::loadModel()
{
const EmbeddingModels *embeddingModels = ModelList::globalInstance()->installedEmbeddingModels();
if (!embeddingModels->count())
return false;
m_nomicAPIKey.clear();
m_model = nullptr;
const ModelInfo defaultModel = embeddingModels->defaultModelInfo();
QString filePath = defaultModel.dirpath + defaultModel.filename();
QFileInfo fileInfo(filePath);
if (!fileInfo.exists()) {
qWarning() << "WARNING: Could not load sbert because file does not exist";
m_model = nullptr;
return false;
if (MySettings::globalInstance()->localDocsUseRemoteEmbed()) {
m_nomicAPIKey = MySettings::globalInstance()->localDocsNomicAPIKey();
return true;
}
auto filename = fileInfo.fileName();
bool isNomic = filename.startsWith("gpt4all-nomic-") && filename.endsWith(".rmodel");
if (isNomic) {
QFile file(filePath);
if (!file.open(QIODeviceBase::ReadOnly)) {
qWarning() << "failed to open" << filePath << ":" << file.errorString();
m_model = nullptr;
return false;
}
QJsonDocument doc = QJsonDocument::fromJson(file.readAll());
QJsonObject obj = doc.object();
m_nomicAPIKey = obj["apiKey"].toString();
file.close();
return true;
QString filePath = u"%1/../resources/%2"_s.arg(QCoreApplication::applicationDirPath(), LOCAL_EMBEDDING_MODEL);
if (!QFileInfo::exists(filePath)) {
qWarning() << "WARNING: Local embedding model not found";
return false;
}
try {
m_model = LLModel::Implementation::construct(filePath.toStdString());
} catch (const std::exception &e) {
qWarning() << "WARNING: Could not load embedding model:" << e.what();
m_model = nullptr;
return false;
}
// FIXME(jared): the user may want this to take effect without having to restart
int n_threads = MySettings::globalInstance()->threadCount();
m_model->setThreadCount(n_threads);
// NOTE: explicitly loads model on CPU to avoid GPU OOM
// TODO(cebtenzzre): support GPU-accelerated embeddings
bool success = m_model->loadModel(filePath.toStdString(), 2048, 0);
@@ -115,31 +107,38 @@ bool EmbeddingLLMWorker::loadModel()
return true;
}
bool EmbeddingLLMWorker::hasModel() const
std::vector<float> EmbeddingLLMWorker::generateQueryEmbedding(const QString &text)
{
return m_model || !m_nomicAPIKey.isEmpty();
}
{
QMutexLocker locker(&m_mutex);
bool EmbeddingLLMWorker::isNomic() const
{
return !m_nomicAPIKey.isEmpty();
}
if (!hasModel() && !loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return {};
}
// this function is always called for retrieval tasks
std::vector<float> EmbeddingLLMWorker::generateSyncEmbedding(const QString &text)
{
Q_ASSERT(!isNomic());
std::vector<float> embedding(m_model->embeddingSize());
try {
m_model->embed({text.toStdString()}, embedding.data(), true);
} catch (const std::exception &e) {
qWarning() << "WARNING: LLModel::embed failed: " << e.what();
return {};
if (!isNomic()) {
std::vector<float> embedding(m_model->embeddingSize());
try {
m_model->embed({text.toStdString()}, embedding.data(), true);
} catch (const std::exception &e) {
qWarning() << "WARNING: LLModel::embed failed:" << e.what();
return {};
}
return embedding;
}
}
return embedding;
EmbeddingLLMWorker worker;
emit worker.requestAtlasQueryEmbedding(text);
worker.wait();
return worker.lastResponse();
}
void EmbeddingLLMWorker::sendAtlasRequest(const QStringList &texts, const QString &taskType, QVariant userData) {
void EmbeddingLLMWorker::sendAtlasRequest(const QStringList &texts, const QString &taskType, const QVariant &userData)
{
QJsonObject root;
root.insert("model", "nomic-embed-text-v1");
root.insert("texts", QJsonArray::fromStringList(texts));
@@ -148,7 +147,7 @@ void EmbeddingLLMWorker::sendAtlasRequest(const QStringList &texts, const QStrin
QJsonDocument doc(root);
QUrl nomicUrl("https://api-atlas.nomic.ai/v1/embedding/text");
const QString authorization = QString("Bearer %1").arg(m_nomicAPIKey).trimmed();
const QString authorization = u"Bearer %1"_s.arg(m_nomicAPIKey).trimmed();
QNetworkRequest request(nomicUrl);
request.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
request.setRawHeader("Authorization", authorization.toUtf8());
@@ -158,50 +157,63 @@ void EmbeddingLLMWorker::sendAtlasRequest(const QStringList &texts, const QStrin
connect(reply, &QNetworkReply::finished, this, &EmbeddingLLMWorker::handleFinished);
}
// this function is always called for retrieval tasks
void EmbeddingLLMWorker::requestSyncEmbedding(const QString &text)
void EmbeddingLLMWorker::atlasQueryEmbeddingRequested(const QString &text)
{
if (!hasModel() && !loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return;
}
{
QMutexLocker locker(&m_mutex);
if (!hasModel() && !loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return;
}
if (!isNomic()) {
qWarning() << "WARNING: Request to generate sync embeddings for local model invalid";
return;
}
if (!isNomic()) {
qWarning() << "WARNING: Request to generate sync embeddings for local model invalid";
return;
}
Q_ASSERT(hasModel());
Q_ASSERT(hasModel());
}
sendAtlasRequest({text}, "search_query");
}
// this function is always called for storage into the database
void EmbeddingLLMWorker::requestAsyncEmbedding(const QVector<EmbeddingChunk> &chunks)
void EmbeddingLLMWorker::docEmbeddingsRequested(const QVector<EmbeddingChunk> &chunks)
{
if (m_stopGenerating)
return;
if (!hasModel() && !loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return;
bool isNomic;
{
QMutexLocker locker(&m_mutex);
if (!hasModel() && !loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return;
}
isNomic = this->isNomic();
}
if (m_nomicAPIKey.isEmpty()) {
if (!isNomic) {
QVector<EmbeddingResult> results;
results.reserve(chunks.size());
for (auto c : chunks) {
for (const auto &c: chunks) {
EmbeddingResult result;
result.model = c.model;
result.folder_id = c.folder_id;
result.chunk_id = c.chunk_id;
// TODO(cebtenzzre): take advantage of batched embeddings
result.embedding.resize(m_model->embeddingSize());
try {
m_model->embed({c.chunk.toStdString()}, result.embedding.data(), false);
} catch (const std::exception &e) {
qWarning() << "WARNING: LLModel::embed failed:" << e.what();
return;
{
QMutexLocker locker(&m_mutex);
try {
m_model->embed({c.chunk.toStdString()}, result.embedding.data(), false);
} catch (const std::exception &e) {
qWarning() << "WARNING: LLModel::embed failed:" << e.what();
return;
}
}
results << result;
}
emit embeddingsGenerated(results);
@@ -214,14 +226,15 @@ void EmbeddingLLMWorker::requestAsyncEmbedding(const QVector<EmbeddingChunk> &ch
sendAtlasRequest(texts, "search_document", QVariant::fromValue(chunks));
}
std::vector<float> jsonArrayToVector(const QJsonArray &jsonArray) {
std::vector<float> jsonArrayToVector(const QJsonArray &jsonArray)
{
std::vector<float> result;
for (const QJsonValue &innerValue : jsonArray) {
for (const auto &innerValue: jsonArray) {
if (innerValue.isArray()) {
QJsonArray innerArray = innerValue.toArray();
result.reserve(result.size() + innerArray.size());
for (const QJsonValue &value : innerArray) {
for (const auto &value: innerArray) {
result.push_back(static_cast<float>(value.toDouble()));
}
}
@@ -230,7 +243,8 @@ std::vector<float> jsonArrayToVector(const QJsonArray &jsonArray) {
return result;
}
QVector<EmbeddingResult> jsonArrayToEmbeddingResults(const QVector<EmbeddingChunk>& chunks, const QJsonArray& embeddings) {
QVector<EmbeddingResult> jsonArrayToEmbeddingResults(const QVector<EmbeddingChunk>& chunks, const QJsonArray& embeddings)
{
QVector<EmbeddingResult> results;
if (chunks.size() != embeddings.size()) {
@@ -243,10 +257,11 @@ QVector<EmbeddingResult> jsonArrayToEmbeddingResults(const QVector<EmbeddingChun
const QJsonArray embeddingArray = embeddings.at(i).toArray();
std::vector<float> embeddingVector;
for (const QJsonValue& value : embeddingArray)
for (const auto &value: embeddingArray)
embeddingVector.push_back(static_cast<float>(value.toDouble()));
EmbeddingResult result;
result.model = chunk.model;
result.folder_id = chunk.folder_id;
result.chunk_id = chunk.chunk_id;
result.embedding = std::move(embeddingVector);
@@ -267,10 +282,6 @@ void EmbeddingLLMWorker::handleFinished()
if (retrievedData.isValid() && retrievedData.canConvert<QVector<EmbeddingChunk>>())
chunks = retrievedData.value<QVector<EmbeddingChunk>>();
int folder_id = 0;
if (!chunks.isEmpty())
folder_id = chunks.first().folder_id;
QVariant response = reply->attribute(QNetworkRequest::HttpStatusCodeAttribute);
Q_ASSERT(response.isValid());
bool ok;
@@ -279,13 +290,13 @@ void EmbeddingLLMWorker::handleFinished()
QString errorDetails;
QString replyErrorString = reply->errorString().trimmed();
QByteArray replyContent = reply->readAll().trimmed();
errorDetails = QString("ERROR: Nomic Atlas responded with error code \"%1\"").arg(code);
errorDetails = u"ERROR: Nomic Atlas responded with error code \"%1\""_s.arg(code);
if (!replyErrorString.isEmpty())
errorDetails += QString(". Error Details: \"%1\"").arg(replyErrorString);
errorDetails += u". Error Details: \"%1\""_s.arg(replyErrorString);
if (!replyContent.isEmpty())
errorDetails += QString(". Response Content: \"%1\"").arg(QString::fromUtf8(replyContent));
errorDetails += u". Response Content: \"%1\""_s.arg(QString::fromUtf8(replyContent));
qWarning() << errorDetails;
emit errorGenerated(folder_id, errorDetails);
emit errorGenerated(chunks, errorDetails);
return;
}
@@ -294,7 +305,7 @@ void EmbeddingLLMWorker::handleFinished()
QJsonParseError err;
QJsonDocument document = QJsonDocument::fromJson(jsonData, &err);
if (err.error != QJsonParseError::NoError) {
qWarning() << "ERROR: Couldn't parse Nomic Atlas response: " << jsonData << err.errorString();
qWarning() << "ERROR: Couldn't parse Nomic Atlas response:" << jsonData << err.errorString();
return;
}
@@ -315,8 +326,8 @@ EmbeddingLLM::EmbeddingLLM()
: QObject(nullptr)
, m_embeddingWorker(new EmbeddingLLMWorker)
{
connect(this, &EmbeddingLLM::requestAsyncEmbedding, m_embeddingWorker,
&EmbeddingLLMWorker::requestAsyncEmbedding, Qt::QueuedConnection);
connect(this, &EmbeddingLLM::requestDocEmbeddings, m_embeddingWorker,
&EmbeddingLLMWorker::docEmbeddingsRequested, Qt::QueuedConnection);
connect(m_embeddingWorker, &EmbeddingLLMWorker::embeddingsGenerated, this,
&EmbeddingLLM::embeddingsGenerated, Qt::QueuedConnection);
connect(m_embeddingWorker, &EmbeddingLLMWorker::errorGenerated, this,
@@ -329,26 +340,18 @@ EmbeddingLLM::~EmbeddingLLM()
m_embeddingWorker = nullptr;
}
std::vector<float> EmbeddingLLM::generateEmbeddings(const QString &text)
QString EmbeddingLLM::model()
{
if (!m_embeddingWorker->hasModel() && !m_embeddingWorker->loadModel()) {
qWarning() << "WARNING: Could not load model for embeddings";
return {};
}
if (!m_embeddingWorker->isNomic()) {
return m_embeddingWorker->generateSyncEmbedding(text);
}
EmbeddingLLMWorker worker;
connect(this, &EmbeddingLLM::requestSyncEmbedding, &worker,
&EmbeddingLLMWorker::requestSyncEmbedding, Qt::QueuedConnection);
emit requestSyncEmbedding(text);
worker.wait();
return worker.lastResponse();
return EMBEDDING_MODEL_NAME;
}
void EmbeddingLLM::generateAsyncEmbeddings(const QVector<EmbeddingChunk> &chunks)
// TODO(jared): embed using all necessary embedding models given collection
std::vector<float> EmbeddingLLM::generateQueryEmbedding(const QString &text)
{
emit requestAsyncEmbedding(chunks);
return m_embeddingWorker->generateQueryEmbedding(text);
}
void EmbeddingLLM::generateDocEmbeddingsAsync(const QVector<EmbeddingChunk> &chunks)
{
emit requestDocEmbeddings(chunks);
}