mirror of
				https://github.com/nomic-ai/gpt4all.git
				synced 2025-11-03 23:47:16 +00:00 
			
		
		
		
	Replit Model (#713)
* porting over replit code model to gpt4all * replaced memory with kv_self struct * continuing debug * welp it built but lot of sus things * working model loading and somewhat working generate.. need to format response? * revert back to semi working version * finally got rid of weird formatting * figured out problem is with python bindings - this is good to go for testing * addressing PR feedback * output refactor * fixed prompt reponse collection * cleanup * addressing PR comments * building replit backend with new ggmlver code * chatllm replit and clean python files * cleanup * updated replit to match new llmodel api * match llmodel api and change size_t to Token * resolve PR comments * replit model commit comment
This commit is contained in:
		@@ -100,6 +100,10 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
 | 
			
		||||
    add_library(mpt-${BUILD_VARIANT} SHARED
 | 
			
		||||
        mpt.cpp utils.h utils.cpp llmodel_shared.cpp)
 | 
			
		||||
    prepare_target(mpt ggml-230511)
 | 
			
		||||
 | 
			
		||||
    add_library(replit-${BUILD_VARIANT} SHARED
 | 
			
		||||
        replit.cpp utils.h utils.cpp llmodel_shared.cpp)
 | 
			
		||||
    prepare_target(replit ggml-230511)
 | 
			
		||||
endforeach()
 | 
			
		||||
 | 
			
		||||
add_library(llmodel
 | 
			
		||||
 
 | 
			
		||||
@@ -770,7 +770,7 @@ bool MPT::loadModel(const std::string &modelPath) {
 | 
			
		||||
 | 
			
		||||
    // load the model
 | 
			
		||||
    if (!mpt_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab)) {
 | 
			
		||||
        std::cerr << "GPT-J ERROR: failed to load model from " <<  modelPath;
 | 
			
		||||
        std::cerr << "MPT ERROR: failed to load model from " <<  modelPath;
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										975
									
								
								gpt4all-backend/replit.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										975
									
								
								gpt4all-backend/replit.cpp
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,975 @@
 | 
			
		||||
#define REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
 | 
			
		||||
#include "replit_impl.h"
 | 
			
		||||
 | 
			
		||||
#include "utils.h"
 | 
			
		||||
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <cstddef>
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
#include <cstring>
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <map>
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <thread>
 | 
			
		||||
#if defined(_WIN32) && defined(_MSC_VER)
 | 
			
		||||
    #define WIN32_LEAN_AND_MEAN
 | 
			
		||||
    #ifndef NOMINMAX
 | 
			
		||||
        #define NOMINMAX
 | 
			
		||||
    #endif
 | 
			
		||||
    #include <windows.h>
 | 
			
		||||
    #include <io.h>
 | 
			
		||||
    #include <stdio.h>
 | 
			
		||||
#else
 | 
			
		||||
    #include <unistd.h>
 | 
			
		||||
#endif
 | 
			
		||||
#include <unordered_map>
 | 
			
		||||
#include <unordered_set>
 | 
			
		||||
#include <utility>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <regex>
 | 
			
		||||
#include <ggml.h>
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
IMPORTANT: This model backend and convert script were developed for the original Huggingface
 | 
			
		||||
Replit model (hugginface commit hash: 9eceafb041eb8abd565dabfbfadd328869140011)
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
using piece_t = std::pair<std::size_t, float>;
 | 
			
		||||
using piece_map_t = std::unordered_map<std::string, piece_t>;
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
const char *modelType_ = "Replit";
 | 
			
		||||
 | 
			
		||||
static const size_t MB = 1024*1024;
 | 
			
		||||
static const std::string ws_symbol = "\342\226\201";
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct replit_tokenizer {
 | 
			
		||||
    gpt_vocab raw_vocab;
 | 
			
		||||
    piece_map_t piece_map;
 | 
			
		||||
    std::vector<std::string> vocab;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
std::pair<std::vector<LLModel::Token>, float> encode_word(const std::string & word, const piece_map_t & model) {
 | 
			
		||||
    std::vector<int> best_segmentations_starts(word.length() + 1, -1);
 | 
			
		||||
    best_segmentations_starts[0] = 0;
 | 
			
		||||
 | 
			
		||||
    std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity());
 | 
			
		||||
    best_segmentations_scores[0] = 1.0;
 | 
			
		||||
 | 
			
		||||
    for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) {
 | 
			
		||||
        float best_score_at_start = best_segmentations_scores[start_idx];
 | 
			
		||||
        for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) {
 | 
			
		||||
            std::string token = word.substr(start_idx, end_idx - start_idx);
 | 
			
		||||
            if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) {
 | 
			
		||||
                float token_score = model.at(token).second;
 | 
			
		||||
                float score = token_score + best_score_at_start;
 | 
			
		||||
                if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() ||
 | 
			
		||||
                    best_segmentations_scores[end_idx] > score) {
 | 
			
		||||
                    best_segmentations_starts[end_idx] = start_idx;
 | 
			
		||||
                    best_segmentations_scores[end_idx] = score;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) {
 | 
			
		||||
        return std::make_pair(std::vector<LLModel::Token>{0}, 0.0f);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    float score = best_segmentations_scores.back();
 | 
			
		||||
    int start = best_segmentations_starts.back();
 | 
			
		||||
    int end = word.length();
 | 
			
		||||
    std::vector<LLModel::Token> tokens;
 | 
			
		||||
    while (start != 0) {
 | 
			
		||||
        const auto token_id = model.at(word.substr(start, end - start)).first;
 | 
			
		||||
        tokens.insert(tokens.begin(), token_id);
 | 
			
		||||
        int next_start = best_segmentations_starts[start];
 | 
			
		||||
        end = start;
 | 
			
		||||
        start = next_start;
 | 
			
		||||
    }
 | 
			
		||||
    const auto token_id = model.at(word.substr(start, end - start)).first;
 | 
			
		||||
    tokens.insert(tokens.begin(), token_id);
 | 
			
		||||
    return std::make_pair(tokens, score);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool replit_tokenizer_load(replit_tokenizer & tokenizer, std::istream & fin, int max_vocab_size) {
 | 
			
		||||
    std::string word;
 | 
			
		||||
    std::vector<char> buf(128);
 | 
			
		||||
 | 
			
		||||
    for (LLModel::Token i = 0; i < max_vocab_size; i++) {
 | 
			
		||||
        uint32_t len;
 | 
			
		||||
        fin.read((char *)&len, sizeof(len));
 | 
			
		||||
 | 
			
		||||
        buf.resize(len);
 | 
			
		||||
        fin.read((char *) buf.data(), len);
 | 
			
		||||
        word.assign(buf.data(), len);
 | 
			
		||||
 | 
			
		||||
        float score;
 | 
			
		||||
        fin.read((char *)&score, sizeof(score));
 | 
			
		||||
 | 
			
		||||
        tokenizer.piece_map[word] = std::make_pair(i, -score);
 | 
			
		||||
        tokenizer.raw_vocab.id_to_token[i] = word;
 | 
			
		||||
        tokenizer.raw_vocab.token_to_id[word] = i;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string replace_all(const std::string & str,    // where to work
 | 
			
		||||
                        const std::string & find,   // substitute 'find'
 | 
			
		||||
                        const std::string & replace //      by 'replace'
 | 
			
		||||
) {
 | 
			
		||||
    std::string result;
 | 
			
		||||
    size_t find_len = find.size();
 | 
			
		||||
    size_t pos, from = 0;
 | 
			
		||||
    while (std::string::npos != (pos = str.find(find, from))) {
 | 
			
		||||
        result.append(str, from, pos - from);
 | 
			
		||||
        result.append(replace);
 | 
			
		||||
        from = pos + find_len;
 | 
			
		||||
    }
 | 
			
		||||
    result.append(str, from, std::string::npos);
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::vector<LLModel::Token> replit_tokenizer_tokenize(replit_tokenizer & tokenizer, const std::string & text) {
 | 
			
		||||
    std::vector<LLModel::Token> tokens;
 | 
			
		||||
    auto normalized_text = replace_all(text, " ", ws_symbol);
 | 
			
		||||
    auto tokenized = encode_word(normalized_text, tokenizer.piece_map);
 | 
			
		||||
 | 
			
		||||
    return tokenized.first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string replit_tokenizer_detokenize(replit_tokenizer & tokenizer, const std::vector<LLModel::Token> & tokens) {
 | 
			
		||||
    std::string text;
 | 
			
		||||
    for (auto token : tokens) {
 | 
			
		||||
        text += tokenizer.raw_vocab.id_to_token[token];
 | 
			
		||||
    }
 | 
			
		||||
    auto denormalized_text = replace_all(text, ws_symbol, " ");
 | 
			
		||||
    return denormalized_text;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// no defaults for now
 | 
			
		||||
struct mpt_hparams {
 | 
			
		||||
    int32_t n_vocab     = 0;
 | 
			
		||||
    int32_t n_ctx       = 0; //d_model
 | 
			
		||||
    int32_t n_embd      = 0; //max_seq_len
 | 
			
		||||
    int32_t n_head      = 0; // n_heads
 | 
			
		||||
    int32_t n_layer     = 0; //n_layers
 | 
			
		||||
    int32_t ftype       = 0; 
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct replit_layer {
 | 
			
		||||
    // pre normalization
 | 
			
		||||
    struct ggml_tensor * ln_1_weight;
 | 
			
		||||
 | 
			
		||||
    // attention
 | 
			
		||||
    struct ggml_tensor * c_attn_wqkv_weight;
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * c_attn_out_proj_weight;
 | 
			
		||||
 | 
			
		||||
    // post normalization
 | 
			
		||||
    struct ggml_tensor * ln_2_weight;
 | 
			
		||||
 | 
			
		||||
    // ff
 | 
			
		||||
    struct ggml_tensor * c_mlp_mlp_up_weight;
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * c_mlp_mlp_down_weight;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct replit_buffer {
 | 
			
		||||
    uint8_t * addr = NULL;
 | 
			
		||||
    size_t size = 0;
 | 
			
		||||
 | 
			
		||||
    void resize(size_t size) {
 | 
			
		||||
        delete[] addr;
 | 
			
		||||
        addr = new uint8_t[size];
 | 
			
		||||
        this->size = size;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ~replit_buffer() {
 | 
			
		||||
        fflush(stdout);
 | 
			
		||||
        delete[] addr;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct replit_kv_cache {
 | 
			
		||||
    struct ggml_tensor * k;
 | 
			
		||||
    struct ggml_tensor * v;
 | 
			
		||||
 | 
			
		||||
    struct ggml_context * ctx = NULL;
 | 
			
		||||
 | 
			
		||||
    replit_buffer buf;
 | 
			
		||||
 | 
			
		||||
    int n; // number of tokens currently in the cache
 | 
			
		||||
 | 
			
		||||
    ~replit_kv_cache() {
 | 
			
		||||
        if (ctx) {
 | 
			
		||||
            ggml_free(ctx);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct replit_model {
 | 
			
		||||
    mpt_hparams hparams;
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * wte_weight;  // position embedding
 | 
			
		||||
    struct ggml_tensor * ln_f_weight; // language model head
 | 
			
		||||
 | 
			
		||||
    std::vector<replit_layer> layers;
 | 
			
		||||
 | 
			
		||||
    // key + value memory
 | 
			
		||||
    struct replit_kv_cache kv_self;
 | 
			
		||||
 | 
			
		||||
    struct ggml_context * ctx;
 | 
			
		||||
    std::map<std::string, struct ggml_tensor *> tensors;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static bool kv_cache_init(
 | 
			
		||||
        const struct mpt_hparams & hparams,
 | 
			
		||||
             struct replit_kv_cache & cache,
 | 
			
		||||
                         ggml_type   wtype,
 | 
			
		||||
                               int   n_ctx) {
 | 
			
		||||
    const int n_embd  = hparams.n_embd;
 | 
			
		||||
    const int n_layer = hparams.n_layer;
 | 
			
		||||
 | 
			
		||||
    const int64_t n_mem      = (int64_t)n_layer*n_ctx;
 | 
			
		||||
    const int64_t n_elements = n_embd*n_mem;
 | 
			
		||||
    cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
 | 
			
		||||
    struct ggml_init_params params;
 | 
			
		||||
    params.mem_size   = cache.buf.size;
 | 
			
		||||
    params.mem_buffer = cache.buf.addr;
 | 
			
		||||
    params.no_alloc   = false;
 | 
			
		||||
    
 | 
			
		||||
    cache.ctx = ggml_init(params);
 | 
			
		||||
    if (!cache.ctx) {
 | 
			
		||||
        fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | 
			
		||||
    cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// load the model's weights from a stream
 | 
			
		||||
bool replit_model_load(const std::string & fname, std::istream &fin, replit_model & model, replit_tokenizer & vocab) {
 | 
			
		||||
    printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 | 
			
		||||
 | 
			
		||||
    // verify magic
 | 
			
		||||
    {
 | 
			
		||||
        uint32_t magic;
 | 
			
		||||
        fin.read((char *)&magic, sizeof(magic));
 | 
			
		||||
        if (magic != 0x7265706c) {
 | 
			
		||||
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // load hparams
 | 
			
		||||
    {
 | 
			
		||||
        auto & hparams = model.hparams;
 | 
			
		||||
        fin.read((char *) &hparams.n_vocab,     sizeof(hparams.n_vocab));
 | 
			
		||||
        fin.read((char *) &hparams.n_ctx,       sizeof(hparams.n_ctx));
 | 
			
		||||
        fin.read((char *) &hparams.n_embd,      sizeof(hparams.n_embd));
 | 
			
		||||
        fin.read((char *) &hparams.n_head,      sizeof(hparams.n_head));
 | 
			
		||||
        fin.read((char *) &hparams.n_layer,     sizeof(hparams.n_layer));
 | 
			
		||||
        fin.read((char *) &hparams.ftype,       sizeof(hparams.ftype));
 | 
			
		||||
 | 
			
		||||
        const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
 | 
			
		||||
        printf("%s: n_vocab    = %d\n", __func__, hparams.n_vocab);
 | 
			
		||||
        printf("%s: n_ctx      = %d\n", __func__, hparams.n_ctx);
 | 
			
		||||
        printf("%s: n_embd     = %d\n", __func__, hparams.n_embd);
 | 
			
		||||
        printf("%s: n_head     = %d\n", __func__, hparams.n_head);
 | 
			
		||||
        printf("%s: n_layer    = %d\n", __func__, hparams.n_layer);
 | 
			
		||||
        printf("%s: ftype      = %d\n", __func__, hparams.ftype);
 | 
			
		||||
        printf("%s: qntvr      = %d\n", __func__, qntvr);
 | 
			
		||||
 | 
			
		||||
        hparams.ftype %= GGML_QNT_VERSION_FACTOR;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // load vocab
 | 
			
		||||
    replit_tokenizer_load(vocab, fin, model.hparams.n_vocab);
 | 
			
		||||
 | 
			
		||||
    // for the big tensors, we have the option to store the data in 16-bit
 | 
			
		||||
    // floats or quantized in order to save memory and also to speed up the
 | 
			
		||||
    // computation
 | 
			
		||||
    ggml_type wtype = GGML_TYPE_COUNT;
 | 
			
		||||
    switch (model.hparams.ftype) {
 | 
			
		||||
        case 0: wtype = GGML_TYPE_F32;  break;
 | 
			
		||||
        case 1: wtype = GGML_TYPE_F16;  break;
 | 
			
		||||
        case 2: wtype = GGML_TYPE_Q4_0; break;
 | 
			
		||||
        case 3: wtype = GGML_TYPE_Q4_1; break;
 | 
			
		||||
        case 5: wtype = GGML_TYPE_Q4_2; break;
 | 
			
		||||
        default:
 | 
			
		||||
                {
 | 
			
		||||
                    fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
 | 
			
		||||
                            __func__, fname.c_str(), model.hparams.ftype);
 | 
			
		||||
                    return false;
 | 
			
		||||
                }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    auto & ctx = model.ctx;
 | 
			
		||||
 | 
			
		||||
    size_t ctx_size = 0;
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        const auto & hparams = model.hparams;
 | 
			
		||||
 | 
			
		||||
        const int n_embd = hparams.n_embd;
 | 
			
		||||
        const int n_layer = hparams.n_layer;
 | 
			
		||||
        const int n_ctx = hparams.n_ctx;
 | 
			
		||||
        const int n_vocab = hparams.n_vocab;
 | 
			
		||||
 | 
			
		||||
        ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
 | 
			
		||||
        ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32);   // ln_f_weight
 | 
			
		||||
 | 
			
		||||
        ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32));      // ln_1_weight
 | 
			
		||||
        ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
 | 
			
		||||
        ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype));     // attn_out_proj_weight
 | 
			
		||||
        ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32));      // ln_2_weight
 | 
			
		||||
        ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
 | 
			
		||||
        ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
 | 
			
		||||
 | 
			
		||||
        ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
 | 
			
		||||
        ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
 | 
			
		||||
 | 
			
		||||
        ctx_size += (1 + 6 * n_layer) * 512; // object overhead
 | 
			
		||||
 | 
			
		||||
        printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // create the ggml context
 | 
			
		||||
    {
 | 
			
		||||
        struct ggml_init_params params = {
 | 
			
		||||
            .mem_size = ctx_size,
 | 
			
		||||
            .mem_buffer = NULL,
 | 
			
		||||
            .no_alloc = false,
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
        model.ctx = ggml_init(params);
 | 
			
		||||
        if (!model.ctx) {
 | 
			
		||||
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // prepare memory for the weights
 | 
			
		||||
    {
 | 
			
		||||
        const auto & hparams = model.hparams;
 | 
			
		||||
 | 
			
		||||
        const int n_embd = hparams.n_embd;
 | 
			
		||||
        const int n_layer = hparams.n_layer;
 | 
			
		||||
        const int n_vocab = hparams.n_vocab;
 | 
			
		||||
 | 
			
		||||
        model.layers.resize(n_layer);
 | 
			
		||||
 | 
			
		||||
        model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
 | 
			
		||||
        model.ln_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
			
		||||
 | 
			
		||||
        // map by name
 | 
			
		||||
        model.tensors["transformer.wte.weight"] = model.wte_weight;
 | 
			
		||||
        model.tensors["transformer.ln_f.weight"] = model.ln_f_weight;
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < n_layer; ++i) {
 | 
			
		||||
            auto & layer = model.layers[i];
 | 
			
		||||
 | 
			
		||||
            layer.ln_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
			
		||||
            layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
 | 
			
		||||
            layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | 
			
		||||
            layer.ln_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
			
		||||
            layer.c_mlp_mlp_up_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
 | 
			
		||||
            layer.c_mlp_mlp_down_weight = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
 | 
			
		||||
 | 
			
		||||
            // map by name
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_weight;
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] =
 | 
			
		||||
                layer.c_attn_out_proj_weight;
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".ln_2.weight"] = layer.ln_2_weight;
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_up.weight"] = layer.c_mlp_mlp_up_weight;
 | 
			
		||||
            model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_down.weight"] =
 | 
			
		||||
                layer.c_mlp_mlp_down_weight;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // key + value memory
 | 
			
		||||
    {
 | 
			
		||||
        const auto & hparams = model.hparams;
 | 
			
		||||
 | 
			
		||||
        const int n_layer = hparams.n_layer;
 | 
			
		||||
        const int n_ctx = hparams.n_ctx;
 | 
			
		||||
 | 
			
		||||
        const int64_t n_mem = n_layer * n_ctx;
 | 
			
		||||
 | 
			
		||||
        if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
 | 
			
		||||
            fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
 | 
			
		||||
            ggml_free(ctx);
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
 | 
			
		||||
 | 
			
		||||
        printf("%s: memory_size = %8.2f MB, n_mem = %lld\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // load weights
 | 
			
		||||
    {
 | 
			
		||||
        int n_tensors = 0;
 | 
			
		||||
        size_t total_size = 0;
 | 
			
		||||
 | 
			
		||||
        printf("%s: ", __func__);
 | 
			
		||||
 | 
			
		||||
        while (true) {
 | 
			
		||||
            int32_t n_dims;
 | 
			
		||||
            int32_t length;
 | 
			
		||||
            int32_t ttype;
 | 
			
		||||
 | 
			
		||||
            fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | 
			
		||||
            fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | 
			
		||||
            fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
 | 
			
		||||
 | 
			
		||||
            if (fin.eof()) {
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            int32_t nelements = 1;
 | 
			
		||||
            int32_t ne[2] = {1, 1};
 | 
			
		||||
            for (int i = 0; i < n_dims; ++i) {
 | 
			
		||||
                fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | 
			
		||||
                nelements *= ne[i];
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            std::string name(length, 0);
 | 
			
		||||
            fin.read(&name[0], length);
 | 
			
		||||
 | 
			
		||||
            if (model.tensors.find(name.data()) == model.tensors.end()) {
 | 
			
		||||
                fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            auto tensor = model.tensors[name.data()];
 | 
			
		||||
            if (ggml_nelements(tensor) != nelements) {
 | 
			
		||||
                fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 | 
			
		||||
                fprintf(stderr,
 | 
			
		||||
                        "%s: tensor '%s' has wrong shape in model file: got [%5d, "
 | 
			
		||||
                        "%5d], expected [%5d, %5d]\n",
 | 
			
		||||
                        __func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // for debugging
 | 
			
		||||
            if (0) {
 | 
			
		||||
                printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1],
 | 
			
		||||
                       ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            const size_t bpe = ggml_type_size(ggml_type(ttype));
 | 
			
		||||
 | 
			
		||||
            if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 | 
			
		||||
                fprintf(stderr,
 | 
			
		||||
                        "%s: tensor '%s' has wrong size in model file: got %zu, "
 | 
			
		||||
                        "expected %zu\n",
 | 
			
		||||
                        __func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 | 
			
		||||
 | 
			
		||||
            total_size += ggml_nbytes(tensor);
 | 
			
		||||
            if (++n_tensors % 8 == 0) {
 | 
			
		||||
                printf(".");
 | 
			
		||||
                fflush(stdout);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        printf(" done\n");
 | 
			
		||||
 | 
			
		||||
        printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// load the model's weights from a file path
 | 
			
		||||
bool replit_model_load(const std::string & fname, replit_model & model, replit_tokenizer & vocab) {
 | 
			
		||||
 | 
			
		||||
    auto fin = std::ifstream(fname, std::ios::binary);
 | 
			
		||||
    if (!fin) {
 | 
			
		||||
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool loaded = replit_model_load(fname, fin, model, vocab);
 | 
			
		||||
    fin.close();
 | 
			
		||||
    return loaded;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// evaluate the transformer
 | 
			
		||||
//
 | 
			
		||||
//   - model:     the model
 | 
			
		||||
//   - n_threads: number of threads to use
 | 
			
		||||
//   - n_past:    the context size so far
 | 
			
		||||
//   - embd_inp:  the embeddings of the tokens in the context
 | 
			
		||||
//   - embd_w:    the predicted logits for the next token
 | 
			
		||||
//
 | 
			
		||||
bool replit_eval(const replit_model & model, const int n_threads, const int n_past,
 | 
			
		||||
                 const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, size_t & mem_per_token) {
 | 
			
		||||
    const int N = embd_inp.size();
 | 
			
		||||
 | 
			
		||||
    const auto & hparams = model.hparams;
 | 
			
		||||
 | 
			
		||||
    const int n_embd = hparams.n_embd;
 | 
			
		||||
    const int n_layer = hparams.n_layer;
 | 
			
		||||
    const int n_ctx = hparams.n_ctx;
 | 
			
		||||
    const int n_head = hparams.n_head;
 | 
			
		||||
    const int n_vocab = hparams.n_vocab;
 | 
			
		||||
 | 
			
		||||
    static size_t buf_size = 256u * 1024 * 1024;
 | 
			
		||||
    static void * buf = malloc(buf_size);
 | 
			
		||||
 | 
			
		||||
    if (mem_per_token > 0 && mem_per_token * N > buf_size) {
 | 
			
		||||
        const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
 | 
			
		||||
        // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
 | 
			
		||||
        // buf_size, buf_size_new);
 | 
			
		||||
 | 
			
		||||
        // reallocate
 | 
			
		||||
        buf_size = buf_size_new;
 | 
			
		||||
        buf = realloc(buf, buf_size);
 | 
			
		||||
        if (buf == nullptr) {
 | 
			
		||||
            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    struct ggml_init_params params = {
 | 
			
		||||
        .mem_size = buf_size,
 | 
			
		||||
        .mem_buffer = buf,
 | 
			
		||||
        .no_alloc = false,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    struct ggml_context * ctx0 = ggml_init(params);
 | 
			
		||||
    struct ggml_cgraph gf = {.n_threads = n_threads};
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | 
			
		||||
    memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
 | 
			
		||||
 | 
			
		||||
    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
 | 
			
		||||
 | 
			
		||||
    for (int il = 0; il < n_layer; ++il) {
 | 
			
		||||
 | 
			
		||||
        struct ggml_tensor * cur;
 | 
			
		||||
 | 
			
		||||
        // a = self.ln_1(x)
 | 
			
		||||
        {
 | 
			
		||||
            cur = ggml_norm(ctx0, inpL);
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_weight, cur), cur);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // self-attention
 | 
			
		||||
        //  b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
 | 
			
		||||
        //  attn_bias=attn_bias, attention_mask=attention_mask,
 | 
			
		||||
        //  is_causal=is_causal)
 | 
			
		||||
        {
 | 
			
		||||
 | 
			
		||||
            // compute QKV
 | 
			
		||||
            { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); }
 | 
			
		||||
 | 
			
		||||
            struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
 | 
			
		||||
            struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
 | 
			
		||||
            struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
 | 
			
		||||
 | 
			
		||||
            // store key and value to memory
 | 
			
		||||
            {
 | 
			
		||||
                struct ggml_tensor * k =
 | 
			
		||||
                    ggml_view_1d(ctx0, model.kv_self.k, N * n_embd,
 | 
			
		||||
                                 (ggml_element_size(model.kv_self.k) * n_embd) * (il * n_ctx + n_past));
 | 
			
		||||
                struct ggml_tensor * v =
 | 
			
		||||
                    ggml_view_1d(ctx0, model.kv_self.v, N * n_embd,
 | 
			
		||||
                                 (ggml_element_size(model.kv_self.v) * n_embd) * (il * n_ctx + n_past));
 | 
			
		||||
 | 
			
		||||
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | 
			
		||||
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
 | 
			
		||||
            // 2, 1, 3) [64, N, 12]
 | 
			
		||||
            struct ggml_tensor * Q = ggml_permute(
 | 
			
		||||
                ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
 | 
			
		||||
                1, 3);
 | 
			
		||||
 | 
			
		||||
            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
 | 
			
		||||
            // 3) [64, n_past + N, 12]
 | 
			
		||||
            struct ggml_tensor * K =
 | 
			
		||||
                ggml_permute(ctx0,
 | 
			
		||||
                             ggml_reshape_3d(ctx0,
 | 
			
		||||
                                             ggml_view_1d(ctx0, model.kv_self.k, (n_past + N) * n_embd,
 | 
			
		||||
                                                          il * n_ctx * ggml_element_size(model.kv_self.v) * n_embd),
 | 
			
		||||
                                             n_embd / n_head, n_head, n_past + N),
 | 
			
		||||
                             0, 2, 1, 3);
 | 
			
		||||
            // K * Q
 | 
			
		||||
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | 
			
		||||
 | 
			
		||||
            // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | 
			
		||||
            struct ggml_tensor * KQ_scaled =
 | 
			
		||||
                ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
 | 
			
		||||
 | 
			
		||||
            // Alibi
 | 
			
		||||
            struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head);
 | 
			
		||||
 | 
			
		||||
            // KQ_masked = mask_past(KQ_scaled)
 | 
			
		||||
            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
 | 
			
		||||
 | 
			
		||||
            // KQ = soft_max(KQ_masked)
 | 
			
		||||
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | 
			
		||||
 | 
			
		||||
            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
 | 
			
		||||
            // 2, 0, 3).contiguous() [n_past + N, 64, 12]
 | 
			
		||||
            struct ggml_tensor * V_trans = ggml_cpy(
 | 
			
		||||
                ctx0,
 | 
			
		||||
                ggml_permute(ctx0,
 | 
			
		||||
                             ggml_reshape_3d(ctx0,
 | 
			
		||||
                                             ggml_view_1d(ctx0, model.kv_self.v, (n_past + N) * n_embd,
 | 
			
		||||
                                                          il * n_ctx * ggml_element_size(model.kv_self.v) * n_embd),
 | 
			
		||||
                                             n_embd / n_head, n_head, n_past + N),
 | 
			
		||||
                             1, 2, 0, 3),
 | 
			
		||||
                ggml_new_tensor_3d(ctx0, model.kv_self.v->type, n_past + N, n_embd / n_head, n_head));
 | 
			
		||||
 | 
			
		||||
            // KQV = transpose(V) * KQ_soft_max
 | 
			
		||||
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 | 
			
		||||
 | 
			
		||||
            // KQV_merged = KQV.permute(0, 2, 1, 3)
 | 
			
		||||
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | 
			
		||||
 | 
			
		||||
            // cur = KQV_merged.contiguous().view(n_embd, N)
 | 
			
		||||
            cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | 
			
		||||
 | 
			
		||||
            // projection
 | 
			
		||||
            { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        inpL = ggml_add(ctx0, inpL, cur);
 | 
			
		||||
 | 
			
		||||
        // m = self.ln_2(x)
 | 
			
		||||
        {
 | 
			
		||||
            cur = ggml_norm(ctx0, inpL);
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_weight, cur), cur);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // n = self.mlp(m)
 | 
			
		||||
        {
 | 
			
		||||
 | 
			
		||||
            cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_mlp_up_weight, cur);
 | 
			
		||||
 | 
			
		||||
            // GELU activation
 | 
			
		||||
            cur = ggml_gelu(ctx0, cur);
 | 
			
		||||
 | 
			
		||||
            // projection
 | 
			
		||||
            // cur = proj_w*cur + proj_b
 | 
			
		||||
            cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_mlp_down_weight, cur);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // x = x + n
 | 
			
		||||
        inpL = ggml_add(ctx0, inpL, cur);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // norm
 | 
			
		||||
    {
 | 
			
		||||
        inpL = ggml_norm(ctx0, inpL);
 | 
			
		||||
        // inpL = ln_f_g*inpL
 | 
			
		||||
        inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_weight, inpL), inpL);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // output embedding weight tied to input embedding
 | 
			
		||||
    inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
 | 
			
		||||
 | 
			
		||||
    // logits -> probs
 | 
			
		||||
    // inpL = ggml_soft_max(ctx0, inpL);
 | 
			
		||||
 | 
			
		||||
    // run the computation
 | 
			
		||||
    ggml_build_forward_expand(&gf, inpL);
 | 
			
		||||
    ggml_graph_compute(ctx0, &gf);
 | 
			
		||||
 | 
			
		||||
    // std::cout << "Qcur" << std::endl;
 | 
			
		||||
    // print_tensor(Qcur);
 | 
			
		||||
 | 
			
		||||
    // if (n_past%100 == 0) {
 | 
			
		||||
    // ggml_graph_print(&gf);
 | 
			
		||||
    // ggml_graph_dump_dot(&gf, NULL, "replit-model.dot");
 | 
			
		||||
    // }
 | 
			
		||||
 | 
			
		||||
    // return result for just the last token
 | 
			
		||||
    embd_w.resize(n_vocab);
 | 
			
		||||
    memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
 | 
			
		||||
 | 
			
		||||
    if (mem_per_token == 0) {
 | 
			
		||||
        mem_per_token = ggml_used_mem(ctx0) / N;
 | 
			
		||||
    }
 | 
			
		||||
    // printf("used_mem = %zu\n", ggml_used_mem(ctx0));
 | 
			
		||||
 | 
			
		||||
    ggml_free(ctx0);
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define REPLIT_MAX_RNG_STATE 64*1024
 | 
			
		||||
 | 
			
		||||
size_t replit_get_state_size(const replit_model &model)
 | 
			
		||||
{
 | 
			
		||||
    // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
 | 
			
		||||
    // for reference, std::mt19937(1337) serializes to 6701 bytes.
 | 
			
		||||
    const size_t s_rng_size        = sizeof(size_t);
 | 
			
		||||
    const size_t s_rng             = REPLIT_MAX_RNG_STATE;
 | 
			
		||||
    const size_t s_kv_size         = sizeof(size_t);
 | 
			
		||||
    const size_t s_kv_ntok         = sizeof(int);
 | 
			
		||||
    const size_t s_kv              = model.kv_self.buf.size;
 | 
			
		||||
    const size_t s_total = (
 | 
			
		||||
        + s_rng_size
 | 
			
		||||
        + s_rng
 | 
			
		||||
        + s_kv_size
 | 
			
		||||
        + s_kv_ntok
 | 
			
		||||
        + s_kv
 | 
			
		||||
    );
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
    return s_total;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
size_t replit_copy_state_data(const replit_model &model, const std::mt19937 &rng, uint8_t *dest)
 | 
			
		||||
{
 | 
			
		||||
    uint8_t * out = dest;
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
    // copy rng
 | 
			
		||||
    {
 | 
			
		||||
        std::stringstream rng_ss;
 | 
			
		||||
        rng_ss << rng;
 | 
			
		||||
 | 
			
		||||
        const size_t rng_size = rng_ss.str().size();
 | 
			
		||||
        char rng_buf[REPLIT_MAX_RNG_STATE];
 | 
			
		||||
 | 
			
		||||
        memset(&rng_buf[0], 0, REPLIT_MAX_RNG_STATE);
 | 
			
		||||
        memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
 | 
			
		||||
 | 
			
		||||
        memcpy(out, &rng_size,   sizeof(rng_size));   out += sizeof(rng_size);
 | 
			
		||||
        memcpy(out, &rng_buf[0], REPLIT_MAX_RNG_STATE); out += REPLIT_MAX_RNG_STATE;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // copy kv cache
 | 
			
		||||
    {
 | 
			
		||||
        const size_t kv_size = model.kv_self.buf.size;
 | 
			
		||||
        const int    kv_ntok = model.kv_self.n;
 | 
			
		||||
 | 
			
		||||
        memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
 | 
			
		||||
        memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
 | 
			
		||||
 | 
			
		||||
        if (kv_size) {
 | 
			
		||||
            memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const size_t written  = out - dest;
 | 
			
		||||
    const size_t expected = replit_get_state_size(model);
 | 
			
		||||
    assert(written == expected);
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
    return written;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
size_t replit_set_state_data(replit_model *model, std::mt19937 *rng, const uint8_t *src)
 | 
			
		||||
{
 | 
			
		||||
    const uint8_t * in = src;
 | 
			
		||||
 | 
			
		||||
    // set rng
 | 
			
		||||
    {
 | 
			
		||||
        size_t rng_size;
 | 
			
		||||
        char   rng_buf[REPLIT_MAX_RNG_STATE];
 | 
			
		||||
 | 
			
		||||
        memcpy(&rng_size,   in, sizeof(rng_size));    in += sizeof(rng_size);
 | 
			
		||||
        memcpy(&rng_buf[0], in, REPLIT_MAX_RNG_STATE); in += REPLIT_MAX_RNG_STATE;
 | 
			
		||||
 | 
			
		||||
        std::stringstream rng_ss;
 | 
			
		||||
        rng_ss.str(std::string(&rng_buf[0], rng_size));
 | 
			
		||||
        rng_ss >> *rng;
 | 
			
		||||
 | 
			
		||||
        assert(rng_ss.fail() == false);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // set kv cache
 | 
			
		||||
    {
 | 
			
		||||
        size_t kv_size;
 | 
			
		||||
        int kv_ntok;
 | 
			
		||||
 | 
			
		||||
        memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
 | 
			
		||||
        memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
 | 
			
		||||
 | 
			
		||||
        if (kv_size) {
 | 
			
		||||
            assert(model->kv_self.buf.size == kv_size);
 | 
			
		||||
 | 
			
		||||
            void * k_data = model->kv_self.k->data; // remember data pointers
 | 
			
		||||
            void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
 | 
			
		||||
 | 
			
		||||
            memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
 | 
			
		||||
 | 
			
		||||
            model->kv_self.k->data = k_data; // restore correct data pointers
 | 
			
		||||
            model->kv_self.v->data = v_data;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        model->kv_self.n = kv_ntok;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const size_t nread    = in - src;
 | 
			
		||||
    const size_t expected = replit_get_state_size(*model);
 | 
			
		||||
    assert(nread == expected);
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
    return nread;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct ReplitPrivate {
 | 
			
		||||
    const std::string modelPath;
 | 
			
		||||
    bool modelLoaded;
 | 
			
		||||
    replit_tokenizer vocab;
 | 
			
		||||
    replit_model *model = nullptr;
 | 
			
		||||
    int64_t n_threads = 0;
 | 
			
		||||
    size_t mem_per_token = 0;
 | 
			
		||||
    std::mt19937 rng;
 | 
			
		||||
    bool has_end_of_text = false;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
Replit::Replit()
 | 
			
		||||
    : d_ptr(new ReplitPrivate) {
 | 
			
		||||
 | 
			
		||||
    d_ptr->model = new replit_model;
 | 
			
		||||
    d_ptr->modelLoaded = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool Replit::loadModel(const std::string &modelPath) {
 | 
			
		||||
    std::mt19937 rng(time(NULL));
 | 
			
		||||
    d_ptr->rng = rng;
 | 
			
		||||
 | 
			
		||||
    auto fin = std::ifstream(modelPath, std::ios::binary);
 | 
			
		||||
 | 
			
		||||
    // load the model
 | 
			
		||||
    if (!replit_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab)) {
 | 
			
		||||
        std::cerr << "Replit ERROR: failed to load model from " <<  modelPath;
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | 
			
		||||
    d_ptr->modelLoaded = true;
 | 
			
		||||
    d_ptr->has_end_of_text = d_ptr->vocab.raw_vocab.token_to_id.find("<|endoftext|>") != d_ptr->vocab.raw_vocab.token_to_id.end();
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void Replit::setThreadCount(int32_t n_threads) {
 | 
			
		||||
    d_ptr->n_threads = n_threads;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32_t Replit::threadCount() const
 | 
			
		||||
{
 | 
			
		||||
    return d_ptr->n_threads;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Replit::~Replit()
 | 
			
		||||
{
 | 
			
		||||
    delete d_ptr->model;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool Replit::isModelLoaded() const
 | 
			
		||||
{
 | 
			
		||||
    return d_ptr->modelLoaded;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
size_t Replit::stateSize() const
 | 
			
		||||
{
 | 
			
		||||
    return replit_get_state_size(*d_ptr->model);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
size_t Replit::saveState(uint8_t *dest) const
 | 
			
		||||
{
 | 
			
		||||
    return replit_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
size_t Replit::restoreState(const uint8_t *src)
 | 
			
		||||
{
 | 
			
		||||
    return replit_set_state_data(d_ptr->model, &d_ptr->rng, src);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::vector<LLModel::Token> Replit::tokenize(PromptContext &, const std::string &str) const
 | 
			
		||||
{
 | 
			
		||||
    return replit_tokenizer_tokenize(d_ptr->vocab, str);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::string_view Replit::tokenToString(LLModel::Token id) const
 | 
			
		||||
{
 | 
			
		||||
    return replit_tokenizer_detokenize(d_ptr->vocab, {id});
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
LLModel::Token Replit::sampleToken(PromptContext &promptCtx) const
 | 
			
		||||
{
 | 
			
		||||
    const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
 | 
			
		||||
    return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
 | 
			
		||||
        promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
 | 
			
		||||
        n_prev_toks,
 | 
			
		||||
        promptCtx.logits,
 | 
			
		||||
        promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
 | 
			
		||||
        promptCtx.repeat_penalty,
 | 
			
		||||
        d_ptr->rng);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool Replit::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
 | 
			
		||||
{
 | 
			
		||||
    return replit_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32_t Replit::contextLength() const
 | 
			
		||||
{
 | 
			
		||||
    return d_ptr->model->hparams.n_ctx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
const std::vector<LLModel::Token> &Replit::endTokens() const
 | 
			
		||||
{
 | 
			
		||||
    static const std::vector<LLModel::Token> fres = {0, d_ptr->vocab.raw_vocab.token_to_id["<|endoftext|>"]};
 | 
			
		||||
    return fres;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if defined(_WIN32)
 | 
			
		||||
#define DLL_EXPORT __declspec(dllexport)
 | 
			
		||||
#else
 | 
			
		||||
#define DLL_EXPORT __attribute__ ((visibility ("default")))
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
extern "C" {
 | 
			
		||||
DLL_EXPORT bool is_g4a_backend_model_implementation() {
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
DLL_EXPORT const char *get_model_type() {
 | 
			
		||||
    return modelType_;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
DLL_EXPORT const char *get_build_variant() {
 | 
			
		||||
    return GGML_BUILD_VARIANT;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
DLL_EXPORT bool magic_match(std::istream& f) {
 | 
			
		||||
    uint32_t magic = 0;
 | 
			
		||||
    f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
 | 
			
		||||
    return magic == 0x7265706c;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
DLL_EXPORT LLModel *construct() {
 | 
			
		||||
    return new Replit;
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										40
									
								
								gpt4all-backend/replit_impl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								gpt4all-backend/replit_impl.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
#ifndef REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
 | 
			
		||||
#error This file is NOT meant to be included outside of replit.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
 | 
			
		||||
#endif
 | 
			
		||||
#ifndef REPLIT_H
 | 
			
		||||
#define REPLIT_H
 | 
			
		||||
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include "llmodel.h"
 | 
			
		||||
 | 
			
		||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
 | 
			
		||||
 | 
			
		||||
struct ReplitPrivate;
 | 
			
		||||
class Replit : public LLModel {
 | 
			
		||||
public:
 | 
			
		||||
    Replit();
 | 
			
		||||
    ~Replit();
 | 
			
		||||
 | 
			
		||||
    bool loadModel(const std::string &modelPath) override;
 | 
			
		||||
    bool isModelLoaded() const override;
 | 
			
		||||
    size_t stateSize() const override;
 | 
			
		||||
    size_t saveState(uint8_t *dest) const override;
 | 
			
		||||
    size_t restoreState(const uint8_t *src) override;
 | 
			
		||||
    void setThreadCount(int32_t n_threads) override;
 | 
			
		||||
    int32_t threadCount() const override;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    ReplitPrivate *d_ptr;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
    std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
 | 
			
		||||
    std::string_view tokenToString(Token) const override;
 | 
			
		||||
    Token sampleToken(PromptContext &ctx) const override;
 | 
			
		||||
    bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
 | 
			
		||||
    int32_t contextLength() const override;
 | 
			
		||||
    const std::vector<Token>& endTokens() const override;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif // REPLIT_H
 | 
			
		||||
							
								
								
									
										113
									
								
								gpt4all-backend/scripts/convert_replit_hf_to_ggml.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										113
									
								
								gpt4all-backend/scripts/convert_replit_hf_to_ggml.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,113 @@
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
import sys
 | 
			
		||||
import struct
 | 
			
		||||
import json
 | 
			
		||||
import numpy as np
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
import sentencepiece.sentencepiece_model_pb2 as model
 | 
			
		||||
 | 
			
		||||
if len(sys.argv) < 3:
 | 
			
		||||
    print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
 | 
			
		||||
    print("  ftype == 0 -> float32")
 | 
			
		||||
    print("  ftype == 1 -> float16")
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# output in the same directory as the model
 | 
			
		||||
dir_model = sys.argv[1]
 | 
			
		||||
fname_out = sys.argv[1] + "/ggml-replit-code-v1-3b.bin"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
			
		||||
    hparams = json.load(f)
 | 
			
		||||
 | 
			
		||||
sp_proto = model.ModelProto()
 | 
			
		||||
sp_proto.ParseFromString(open(Path(sys.argv[1]) / "spiece.model", "rb").read())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# possible data types
 | 
			
		||||
#   ftype == 0 -> float32
 | 
			
		||||
#   ftype == 1 -> float16
 | 
			
		||||
#
 | 
			
		||||
# map from ftype to string
 | 
			
		||||
ftype_str = ["f32", "f16"]
 | 
			
		||||
 | 
			
		||||
ftype = 1
 | 
			
		||||
if len(sys.argv) > 2:
 | 
			
		||||
    ftype = int(sys.argv[2])
 | 
			
		||||
    if ftype < 0 or ftype > 1:
 | 
			
		||||
        print("Invalid ftype: " + str(ftype))
 | 
			
		||||
        sys.exit(1)
 | 
			
		||||
    fname_out = sys.argv[1] + "/ggml-replit-code-v1-3b-" + ftype_str[ftype] + ".bin"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
 | 
			
		||||
model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
    dir_model, low_cpu_mem_usage=True, trust_remote_code=True
 | 
			
		||||
)
 | 
			
		||||
# print (model)
 | 
			
		||||
 | 
			
		||||
# print(tokenizer.encode('I believe the meaning of life is'))
 | 
			
		||||
 | 
			
		||||
list_vars = model.state_dict()
 | 
			
		||||
for name in list_vars.keys():
 | 
			
		||||
    print(name, list_vars[name].shape, list_vars[name].dtype)
 | 
			
		||||
 | 
			
		||||
fout = open(fname_out, "wb")
 | 
			
		||||
 | 
			
		||||
print(hparams)
 | 
			
		||||
 | 
			
		||||
fout.write(struct.pack("i", 0x7265706c))  # magic: repl in hex
 | 
			
		||||
fout.write(struct.pack("i", hparams["vocab_size"]))
 | 
			
		||||
fout.write(struct.pack("i", hparams["max_seq_len"]))
 | 
			
		||||
fout.write(struct.pack("i", hparams["d_model"]))
 | 
			
		||||
fout.write(struct.pack("i", hparams["n_heads"]))
 | 
			
		||||
fout.write(struct.pack("i", hparams["n_layers"]))
 | 
			
		||||
fout.write(struct.pack("i", ftype))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# TODO: temporary hack to not deal with implementing the tokenizer
 | 
			
		||||
for piece in sp_proto.pieces:
 | 
			
		||||
    encoded_piece = piece.piece.encode("utf-8")
 | 
			
		||||
    fout.write(struct.pack("i", len(encoded_piece)))
 | 
			
		||||
    fout.write(encoded_piece)
 | 
			
		||||
    fout.write(struct.pack("f", piece.score))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
for name in list_vars.keys():
 | 
			
		||||
    data = list_vars[name].squeeze().numpy()
 | 
			
		||||
    print("Processing variable: " + name + " with shape: ", data.shape)
 | 
			
		||||
 | 
			
		||||
    n_dims = len(data.shape)
 | 
			
		||||
 | 
			
		||||
    # ftype == 0 -> float32, ftype == 1 -> float16
 | 
			
		||||
    ftype_cur = 0
 | 
			
		||||
    if ftype != 0:
 | 
			
		||||
        if name[-7:] == ".weight" and n_dims == 2:
 | 
			
		||||
            print("  Converting to float16")
 | 
			
		||||
            data = data.astype(np.float16)
 | 
			
		||||
            ftype_cur = 1
 | 
			
		||||
        else:
 | 
			
		||||
            print("  Converting to float32")
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
            ftype_cur = 0
 | 
			
		||||
    else:
 | 
			
		||||
        if data.dtype != np.float32:
 | 
			
		||||
            print("  Converting to float32")
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
            ftype_cur = 0
 | 
			
		||||
 | 
			
		||||
    # header
 | 
			
		||||
    str = name.encode("utf-8")
 | 
			
		||||
    fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
 | 
			
		||||
    for i in range(n_dims):
 | 
			
		||||
        fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
 | 
			
		||||
    fout.write(str)
 | 
			
		||||
 | 
			
		||||
    # data
 | 
			
		||||
    data.tofile(fout)
 | 
			
		||||
 | 
			
		||||
fout.close()
 | 
			
		||||
 | 
			
		||||
print("Done. Output file: " + fname_out)
 | 
			
		||||
print("")
 | 
			
		||||
@@ -12,11 +12,10 @@ class DualStreamProcessor:
 | 
			
		||||
        self.output = ""
 | 
			
		||||
 | 
			
		||||
    def write(self, text):
 | 
			
		||||
        cleaned_text = re.sub(r"\n(?!\n)", "", text)
 | 
			
		||||
        if self.stream is not None:
 | 
			
		||||
            self.stream.write(cleaned_text)
 | 
			
		||||
            self.stream.write(text)
 | 
			
		||||
            self.stream.flush()
 | 
			
		||||
        self.output += cleaned_text
 | 
			
		||||
        self.output += text
 | 
			
		||||
 | 
			
		||||
# TODO: provide a config file to make this more robust
 | 
			
		||||
LLMODEL_PATH = os.path.join("llmodel_DO_NOT_MODIFY", "build").replace("\\", "\\\\")
 | 
			
		||||
@@ -236,7 +235,6 @@ class LLModel:
 | 
			
		||||
        sys.stdout = old_stdout
 | 
			
		||||
        # Force new line
 | 
			
		||||
        print()
 | 
			
		||||
 | 
			
		||||
        return stream_processor.output
 | 
			
		||||
 | 
			
		||||
    # Empty prompt callback
 | 
			
		||||
@@ -247,7 +245,7 @@ class LLModel:
 | 
			
		||||
    # Empty response callback method that just prints response to be collected
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _response_callback(token_id, response):
 | 
			
		||||
        print(response.decode('utf-8'))
 | 
			
		||||
        sys.stdout.write(response.decode('utf-8'))
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    # Empty recalculate callback
 | 
			
		||||
 
 | 
			
		||||
@@ -18,6 +18,7 @@
 | 
			
		||||
 | 
			
		||||
#define MPT_INTERNAL_STATE_VERSION 0
 | 
			
		||||
#define GPTJ_INTERNAL_STATE_VERSION 0
 | 
			
		||||
#define REPLIT_INTERNAL_STATE_VERSION 0
 | 
			
		||||
#define LLAMA_INTERNAL_STATE_VERSION 0
 | 
			
		||||
 | 
			
		||||
static QString modelFilePath(const QString &modelName, bool isChatGPT)
 | 
			
		||||
@@ -226,6 +227,7 @@ bool ChatLLM::loadModel(const QString &modelName)
 | 
			
		||||
                case 'L': m_modelType = LLModelType::LLAMA_; break;
 | 
			
		||||
                case 'G': m_modelType = LLModelType::GPTJ_; break;
 | 
			
		||||
                case 'M': m_modelType = LLModelType::MPT_; break;
 | 
			
		||||
                case 'R': m_modelType = LLModelType::REPLIT_; break;
 | 
			
		||||
                default: delete std::exchange(m_modelInfo.model, nullptr);
 | 
			
		||||
                }
 | 
			
		||||
            } else {
 | 
			
		||||
@@ -561,6 +563,7 @@ bool ChatLLM::serialize(QDataStream &stream, int version)
 | 
			
		||||
    if (version > 1) {
 | 
			
		||||
        stream << m_modelType;
 | 
			
		||||
        switch (m_modelType) {
 | 
			
		||||
        case REPLIT_: stream << REPLIT_INTERNAL_STATE_VERSION; break;
 | 
			
		||||
        case MPT_: stream << MPT_INTERNAL_STATE_VERSION; break;
 | 
			
		||||
        case GPTJ_: stream << GPTJ_INTERNAL_STATE_VERSION; break;
 | 
			
		||||
        case LLAMA_: stream << LLAMA_INTERNAL_STATE_VERSION; break;
 | 
			
		||||
 
 | 
			
		||||
@@ -13,6 +13,7 @@ enum LLModelType {
 | 
			
		||||
    GPTJ_,
 | 
			
		||||
    LLAMA_,
 | 
			
		||||
    CHATGPT_,
 | 
			
		||||
    REPLIT_
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct LLModelInfo {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user