mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-09-06 02:50:36 +00:00
vulkan support for typescript bindings, gguf support (#1390)
* adding some native methods to cpp wrapper * gpu seems to work * typings and add availibleGpus method * fix spelling * fix syntax * more * normalize methods to conform to py * remove extra dynamic linker deps when building with vulkan * bump python version (library linking fix) * Don't link against libvulkan. * vulkan python bindings on windows fixes * Bring the vulkan backend to the GUI. * When device is Auto (the default) then we will only consider discrete GPU's otherwise fallback to CPU. * Show the device we're currently using. * Fix up the name and formatting. * init at most one vulkan device, submodule update fixes issues w/ multiple of the same gpu * Update the submodule. * Add version 2.4.15 and bump the version number. * Fix a bug where we're not properly falling back to CPU. * Sync to a newer version of llama.cpp with bugfix for vulkan. * Report the actual device we're using. * Only show GPU when we're actually using it. * Bump to new llama with new bugfix. * Release notes for v2.4.16 and bump the version. * Fallback to CPU more robustly. * Release notes for v2.4.17 and bump the version. * Bump the Python version to python-v1.0.12 to restrict the quants that vulkan recognizes. * Link against ggml in bin so we can get the available devices without loading a model. * Send actual and requested device info for those who have opt-in. * Actually bump the version. * Release notes for v2.4.18 and bump the version. * Fix for crashes on systems where vulkan is not installed properly. * Release notes for v2.4.19 and bump the version. * fix typings and vulkan build works on win * Add flatpak manifest * Remove unnecessary stuffs from manifest * Update to 2.4.19 * appdata: update software description * Latest rebase on llama.cpp with gguf support. * macos build fixes * llamamodel: metal supports all quantization types now * gpt4all.py: GGUF * pyllmodel: print specific error message * backend: port BERT to GGUF * backend: port MPT to GGUF * backend: port Replit to GGUF * backend: use gguf branch of llama.cpp-mainline * backend: use llamamodel.cpp for StarCoder * conversion scripts: cleanup * convert scripts: load model as late as possible * convert_mpt_hf_to_gguf.py: better tokenizer decoding * backend: use llamamodel.cpp for Falcon * convert scripts: make them directly executable * fix references to removed model types * modellist: fix the system prompt * backend: port GPT-J to GGUF * gpt-j: update inference to match latest llama.cpp insights - Use F16 KV cache - Store transposed V in the cache - Avoid unnecessary Q copy Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> ggml upstream commit 0265f0813492602fec0e1159fe61de1bf0ccaf78 * chatllm: grammar fix * convert scripts: use bytes_to_unicode from transformers * convert scripts: make gptj script executable * convert scripts: add feed-forward length for better compatiblilty This GGUF key is used by all llama.cpp models with upstream support. * gptj: remove unused variables * Refactor for subgroups on mat * vec kernel. * Add q6_k kernels for vulkan. * python binding: print debug message to stderr * Fix regenerate button to be deterministic and bump the llama version to latest we have for gguf. * Bump to the latest fixes for vulkan in llama. * llamamodel: fix static vector in LLamaModel::endTokens * Switch to new models2.json for new gguf release and bump our version to 2.5.0. * Bump to latest llama/gguf branch. * chat: report reason for fallback to CPU * chat: make sure to clear fallback reason on success * more accurate fallback descriptions * differentiate between init failure and unsupported models * backend: do not use Vulkan with non-LLaMA models * Add q8_0 kernels to kompute shaders and bump to latest llama/gguf. * backend: fix build with Visual Studio generator Use the $<CONFIG> generator expression instead of CMAKE_BUILD_TYPE. This is needed because Visual Studio is a multi-configuration generator, so we do not know what the build type will be until `cmake --build` is called. Fixes #1470 * remove old llama.cpp submodules * Reorder and refresh our models2.json. * rebase on newer llama.cpp * python/embed4all: use gguf model, allow passing kwargs/overriding model * Add starcoder, rift and sbert to our models2.json. * Push a new version number for llmodel backend now that it is based on gguf. * fix stray comma in models2.json Signed-off-by: Aaron Miller <apage43@ninjawhale.com> * Speculative fix for build on mac. * chat: clearer CPU fallback messages * Fix crasher with an empty string for prompt template. * Update the language here to avoid misunderstanding. * added EM German Mistral Model * make codespell happy * issue template: remove "Related Components" section * cmake: install the GPT-J plugin (#1487) * Do not delete saved chats if we fail to serialize properly. * Restore state from text if necessary. * Another codespell attempted fix. * llmodel: do not call magic_match unless build variant is correct (#1488) * chatllm: do not write uninitialized data to stream (#1486) * mat*mat for q4_0, q8_0 * do not process prompts on gpu yet * python: support Path in GPT4All.__init__ (#1462) * llmodel: print an error if the CPU does not support AVX (#1499) * python bindings should be quiet by default * disable llama.cpp logging unless GPT4ALL_VERBOSE_LLAMACPP envvar is nonempty * make verbose flag for retrieve_model default false (but also be overridable via gpt4all constructor) should be able to run a basic test: ```python import gpt4all model = gpt4all.GPT4All('/Users/aaron/Downloads/rift-coder-v0-7b-q4_0.gguf') print(model.generate('def fib(n):')) ``` and see no non-model output when successful * python: always check status code of HTTP responses (#1502) * Always save chats to disk, but save them as text by default. This also changes the UI behavior to always open a 'New Chat' and setting it as current instead of setting a restored chat as current. This improves usability by not requiring the user to wait if they want to immediately start chatting. * Update README.md Signed-off-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com> * fix embed4all filename https://discordapp.com/channels/1076964370942267462/1093558720690143283/1161778216462192692 Signed-off-by: Aaron Miller <apage43@ninjawhale.com> * Improves Java API signatures maintaining back compatibility * python: replace deprecated pkg_resources with importlib (#1505) * Updated chat wishlist (#1351) * q6k, q4_1 mat*mat * update mini-orca 3b to gguf2, license Signed-off-by: Aaron Miller <apage43@ninjawhale.com> * convert scripts: fix AutoConfig typo (#1512) * publish config https://docs.npmjs.com/cli/v9/configuring-npm/package-json#publishconfig (#1375) merge into my branch * fix appendBin * fix gpu not initializing first * sync up * progress, still wip on destructor * some detection work * untested dispose method * add js side of dispose * Update gpt4all-bindings/typescript/index.cc Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * Update gpt4all-bindings/typescript/index.cc Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * Update gpt4all-bindings/typescript/index.cc Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * Update gpt4all-bindings/typescript/src/gpt4all.d.ts Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * Update gpt4all-bindings/typescript/src/gpt4all.js Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * Update gpt4all-bindings/typescript/src/util.js Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> * fix tests * fix circleci for nodejs * bump version --------- Signed-off-by: Aaron Miller <apage43@ninjawhale.com> Signed-off-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com> Signed-off-by: Jacob Nguyen <76754747+jacoobes@users.noreply.github.com> Co-authored-by: Aaron Miller <apage43@ninjawhale.com> Co-authored-by: Adam Treat <treat.adam@gmail.com> Co-authored-by: Akarshan Biswas <akarshan.biswas@gmail.com> Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Jan Philipp Harries <jpdus@users.noreply.github.com> Co-authored-by: umarmnaq <102142660+umarmnaq@users.noreply.github.com> Co-authored-by: Alex Soto <asotobu@gmail.com> Co-authored-by: niansa/tuxifan <tuxifan@posteo.de>
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
#include "index.h"
|
||||
|
||||
Napi::FunctionReference NodeModelWrapper::constructor;
|
||||
|
||||
Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
Napi::Function self = DefineClass(env, "LLModel", {
|
||||
@@ -13,14 +12,64 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
InstanceMethod("embed", &NodeModelWrapper::GenerateEmbedding),
|
||||
InstanceMethod("threadCount", &NodeModelWrapper::ThreadCount),
|
||||
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
|
||||
InstanceMethod("initGpuByString", &NodeModelWrapper::InitGpuByString),
|
||||
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
|
||||
InstanceMethod("listGpu", &NodeModelWrapper::GetGpuDevices),
|
||||
InstanceMethod("memoryNeeded", &NodeModelWrapper::GetRequiredMemory),
|
||||
InstanceMethod("dispose", &NodeModelWrapper::Dispose)
|
||||
});
|
||||
// Keep a static reference to the constructor
|
||||
//
|
||||
constructor = Napi::Persistent(self);
|
||||
constructor.SuppressDestruct();
|
||||
Napi::FunctionReference* constructor = new Napi::FunctionReference();
|
||||
*constructor = Napi::Persistent(self);
|
||||
env.SetInstanceData(constructor);
|
||||
return self;
|
||||
}
|
||||
Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo& info)
|
||||
{
|
||||
auto env = info.Env();
|
||||
return Napi::Number::New(env, static_cast<uint32_t>( llmodel_required_mem(GetInference(), full_model_path.c_str()) ));
|
||||
|
||||
}
|
||||
Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo& info)
|
||||
{
|
||||
auto env = info.Env();
|
||||
int num_devices = 0;
|
||||
auto mem_size = llmodel_required_mem(GetInference(), full_model_path.c_str());
|
||||
llmodel_gpu_device* all_devices = llmodel_available_gpu_devices(GetInference(), mem_size, &num_devices);
|
||||
if(all_devices == nullptr) {
|
||||
Napi::Error::New(
|
||||
env,
|
||||
"Unable to retrieve list of all GPU devices"
|
||||
).ThrowAsJavaScriptException();
|
||||
return env.Undefined();
|
||||
}
|
||||
auto js_array = Napi::Array::New(env, num_devices);
|
||||
for(int i = 0; i < num_devices; ++i) {
|
||||
auto gpu_device = all_devices[i];
|
||||
/*
|
||||
*
|
||||
* struct llmodel_gpu_device {
|
||||
int index = 0;
|
||||
int type = 0; // same as VkPhysicalDeviceType
|
||||
size_t heapSize = 0;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
};
|
||||
*
|
||||
*/
|
||||
Napi::Object js_gpu_device = Napi::Object::New(env);
|
||||
js_gpu_device["index"] = uint32_t(gpu_device.index);
|
||||
js_gpu_device["type"] = uint32_t(gpu_device.type);
|
||||
js_gpu_device["heapSize"] = static_cast<uint32_t>( gpu_device.heapSize );
|
||||
js_gpu_device["name"]= gpu_device.name;
|
||||
js_gpu_device["vendor"] = gpu_device.vendor;
|
||||
|
||||
js_array[i] = js_gpu_device;
|
||||
}
|
||||
return js_array;
|
||||
}
|
||||
|
||||
|
||||
Napi::Value NodeModelWrapper::getType(const Napi::CallbackInfo& info)
|
||||
{
|
||||
if(type.empty()) {
|
||||
@@ -29,15 +78,41 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
return Napi::String::New(info.Env(), type);
|
||||
}
|
||||
|
||||
Napi::Value NodeModelWrapper::InitGpuByString(const Napi::CallbackInfo& info)
|
||||
{
|
||||
auto env = info.Env();
|
||||
uint32_t memory_required = info[0].As<Napi::Number>();
|
||||
|
||||
std::string gpu_device_identifier = info[1].As<Napi::String>();
|
||||
|
||||
size_t converted_value;
|
||||
if(memory_required <= std::numeric_limits<size_t>::max()) {
|
||||
converted_value = static_cast<size_t>(memory_required);
|
||||
} else {
|
||||
Napi::Error::New(
|
||||
env,
|
||||
"invalid number for memory size. Exceeded bounds for memory."
|
||||
).ThrowAsJavaScriptException();
|
||||
return env.Undefined();
|
||||
}
|
||||
|
||||
auto result = llmodel_gpu_init_gpu_device_by_string(GetInference(), converted_value, gpu_device_identifier.c_str());
|
||||
return Napi::Boolean::New(env, result);
|
||||
}
|
||||
Napi::Value NodeModelWrapper::HasGpuDevice(const Napi::CallbackInfo& info)
|
||||
{
|
||||
return Napi::Boolean::New(info.Env(), llmodel_has_gpu_device(GetInference()));
|
||||
}
|
||||
|
||||
NodeModelWrapper::NodeModelWrapper(const Napi::CallbackInfo& info) : Napi::ObjectWrap<NodeModelWrapper>(info)
|
||||
{
|
||||
auto env = info.Env();
|
||||
fs::path model_path;
|
||||
|
||||
std::string full_weight_path;
|
||||
//todo
|
||||
std::string library_path = ".";
|
||||
std::string model_name;
|
||||
std::string full_weight_path,
|
||||
library_path = ".",
|
||||
model_name,
|
||||
device;
|
||||
if(info[0].IsString()) {
|
||||
model_path = info[0].As<Napi::String>().Utf8Value();
|
||||
full_weight_path = model_path.string();
|
||||
@@ -56,13 +131,14 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
} else {
|
||||
library_path = ".";
|
||||
}
|
||||
device = config_object.Get("device").As<Napi::String>();
|
||||
}
|
||||
llmodel_set_implementation_search_path(library_path.c_str());
|
||||
llmodel_error e = {
|
||||
.message="looks good to me",
|
||||
.code=0,
|
||||
};
|
||||
inference_ = std::make_shared<llmodel_model>(llmodel_model_create2(full_weight_path.c_str(), "auto", &e));
|
||||
inference_ = llmodel_model_create2(full_weight_path.c_str(), "auto", &e);
|
||||
if(e.code != 0) {
|
||||
Napi::Error::New(env, e.message).ThrowAsJavaScriptException();
|
||||
return;
|
||||
@@ -74,18 +150,45 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
Napi::Error::New(env, "Had an issue creating llmodel object, inference is null").ThrowAsJavaScriptException();
|
||||
return;
|
||||
}
|
||||
if(device != "cpu") {
|
||||
size_t mem = llmodel_required_mem(GetInference(), full_weight_path.c_str());
|
||||
if(mem == 0) {
|
||||
std::cout << "WARNING: no memory needed. does this model support gpu?\n";
|
||||
}
|
||||
std::cout << "Initiating GPU\n";
|
||||
std::cout << "Memory required estimation: " << mem << "\n";
|
||||
|
||||
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem, device.c_str());
|
||||
if(success) {
|
||||
std::cout << "GPU init successfully\n";
|
||||
} else {
|
||||
std::cout << "WARNING: Failed to init GPU\n";
|
||||
}
|
||||
}
|
||||
|
||||
auto success = llmodel_loadModel(GetInference(), full_weight_path.c_str());
|
||||
if(!success) {
|
||||
Napi::Error::New(env, "Failed to load model at given path").ThrowAsJavaScriptException();
|
||||
return;
|
||||
}
|
||||
name = model_name.empty() ? model_path.filename().string() : model_name;
|
||||
};
|
||||
//NodeModelWrapper::~NodeModelWrapper() {
|
||||
//GetInference().reset();
|
||||
//}
|
||||
|
||||
name = model_name.empty() ? model_path.filename().string() : model_name;
|
||||
full_model_path = full_weight_path;
|
||||
};
|
||||
|
||||
// NodeModelWrapper::~NodeModelWrapper() {
|
||||
// if(GetInference() != nullptr) {
|
||||
// std::cout << "Debug: deleting model\n";
|
||||
// llmodel_model_destroy(inference_);
|
||||
// std::cout << (inference_ == nullptr);
|
||||
// }
|
||||
// }
|
||||
// void NodeModelWrapper::Finalize(Napi::Env env) {
|
||||
// if(inference_ != nullptr) {
|
||||
// std::cout << "Debug: deleting model\n";
|
||||
//
|
||||
// }
|
||||
// }
|
||||
Napi::Value NodeModelWrapper::IsModelLoaded(const Napi::CallbackInfo& info) {
|
||||
return Napi::Boolean::New(info.Env(), llmodel_isModelLoaded(GetInference()));
|
||||
}
|
||||
@@ -193,8 +296,9 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
std::string copiedQuestion = question;
|
||||
PromptWorkContext pc = {
|
||||
copiedQuestion,
|
||||
std::ref(inference_),
|
||||
inference_,
|
||||
copiedPrompt,
|
||||
""
|
||||
};
|
||||
auto threadSafeContext = new TsfnContext(env, pc);
|
||||
threadSafeContext->tsfn = Napi::ThreadSafeFunction::New(
|
||||
@@ -210,7 +314,9 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
threadSafeContext->nativeThread = std::thread(threadEntry, threadSafeContext);
|
||||
return threadSafeContext->deferred_.Promise();
|
||||
}
|
||||
|
||||
void NodeModelWrapper::Dispose(const Napi::CallbackInfo& info) {
|
||||
llmodel_model_destroy(inference_);
|
||||
}
|
||||
void NodeModelWrapper::SetThreadCount(const Napi::CallbackInfo& info) {
|
||||
if(info[0].IsNumber()) {
|
||||
llmodel_setThreadCount(GetInference(), info[0].As<Napi::Number>().Int64Value());
|
||||
@@ -233,7 +339,7 @@ Napi::Function NodeModelWrapper::GetClass(Napi::Env env) {
|
||||
}
|
||||
|
||||
llmodel_model NodeModelWrapper::GetInference() {
|
||||
return *inference_;
|
||||
return inference_;
|
||||
}
|
||||
|
||||
//Exports Bindings
|
||||
|
Reference in New Issue
Block a user