mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-09-03 01:24:53 +00:00
Add better docs and threading support to bert.
This commit is contained in:
@@ -1,8 +1,7 @@
|
||||
# GPT4All Python API
|
||||
# GPT4All Python Generation API
|
||||
The `GPT4All` python package provides bindings to our C/C++ model backend libraries.
|
||||
The source code and local build instructions can be found [here](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/python).
|
||||
|
||||
|
||||
## Quickstart
|
||||
|
||||
```bash
|
||||
@@ -109,22 +108,5 @@ with model.chat_session():
|
||||
print(model.current_chat_session)
|
||||
```
|
||||
|
||||
### Generating embeddings
|
||||
GPT4All includes a super simple means of generating embeddings for your text documents. The embedding model will automatically be downloaded if not installed.
|
||||
|
||||
=== "Embed4All Example"
|
||||
``` py
|
||||
from gpt4all import GPT4All, Embed4All
|
||||
text = 'The quick brown fox jumps over the lazy dog'
|
||||
embedder = Embed4All()
|
||||
output = embedder.embed(text)
|
||||
print(output)
|
||||
```
|
||||
=== "Output"
|
||||
```
|
||||
[0.034696947783231735, -0.07192722707986832, 0.06923297047615051, ...]
|
||||
```
|
||||
|
||||
### API documentation
|
||||
::: gpt4all.gpt4all.GPT4All
|
||||
::: gpt4all.gpt4all.Embed4All
|
||||
|
35
gpt4all-bindings/python/docs/gpt4all_python_embedding.md
Normal file
35
gpt4all-bindings/python/docs/gpt4all_python_embedding.md
Normal file
@@ -0,0 +1,35 @@
|
||||
# GPT4All Python Embedding API
|
||||
GPT4All includes a super simple means of generating embeddings for your text documents.
|
||||
|
||||
## Quickstart
|
||||
|
||||
```bash
|
||||
pip install gpt4all
|
||||
```
|
||||
|
||||
### Generating embeddings
|
||||
The embedding model will automatically be downloaded if not installed.
|
||||
|
||||
=== "Embed4All Example"
|
||||
``` py
|
||||
from gpt4all import GPT4All, Embed4All
|
||||
text = 'The quick brown fox jumps over the lazy dog'
|
||||
embedder = Embed4All()
|
||||
output = embedder.embed(text)
|
||||
print(output)
|
||||
```
|
||||
=== "Output"
|
||||
```
|
||||
[0.034696947783231735, -0.07192722707986832, 0.06923297047615051, ...]
|
||||
```
|
||||
### Speed of embedding generation
|
||||
The following table lists the generation speed for text documents of N tokens captured on an Intel i913900HX CPU with DDR5 5600 running with 8 threads under stable load.
|
||||
|
||||
| Tokens | 2^7 | 2^9 | 2^11 | 2^13 | 2^14 |
|
||||
| --------------- | ---- | ---- | ---- | ---- | ---- |
|
||||
| Wall time (s) | .02 | .08 | .24 | .96 | 1.9 |
|
||||
| Tokens / Second | 6508 | 6431 | 8622 | 8509 | 8369 |
|
||||
|
||||
|
||||
### API documentation
|
||||
::: gpt4all.gpt4all.Embed4All
|
Reference in New Issue
Block a user