# GPT4All Monitoring GPT4All integrates with [OpenLIT](https://github.com/openlit/openlit) open telemetry instrumentation to perform real-time monitoring of your LLM application and hardware. Monitoring can enhance your GPT4All deployment with auto-generated traces for - performance metrics - user interactions - GPU metrics like utilization, memory, temperature, power usage ## Setup Monitoring !!! note "Setup Monitoring" With [OpenLIT](https://github.com/openlit/openlit), you can automatically monitor metrics for your LLM deployment: ```shell pip install openlit ``` ```python from gpt4all import GPT4All import openlit openlit.init() # start # openlit.init(collect_gpu_stats=True) # or, start with optional GPU monitoring model = GPT4All(model_name='orca-mini-3b-gguf2-q4_0.gguf') # Start a chat session and send queries with model.chat_session(): response1 = model.generate(prompt='hello', temp=0) response2 = model.generate(prompt='write me a short poem', temp=0) response3 = model.generate(prompt='thank you', temp=0) print(model.current_chat_session) ``` ## OpenLIT UI Connect to OpenLIT's UI to start exploring performance metrics. Visit the OpenLIT [Quickstart Guide](https://docs.openlit.io/latest/quickstart) for step-by-step details. ## Grafana, DataDog, & Other Integrations If you use tools like , you can integrate the data collected by OpenLIT. For instructions on setting up these connections, check the OpenLIT [Connections Guide](https://docs.openlit.io/latest/connections/intro).