from __future__ import annotations import json import struct import sys from pathlib import Path import gguf import numpy as np from sentencepiece import SentencePieceProcessor from transformers import AutoModelForCausalLM, AutoTokenizer if not 2 <= len(sys.argv) < 4: print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name)) print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = Path(sys.argv[1]) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = dir_model / ("ggml-replit-code-v1-3b-" + ftype_str[ftype] + ".gguf") ARCH = gguf.MODEL_ARCH.MPT gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) print("gguf: get model metadata") model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) config = model.config #print(model) block_count = config.n_layers gguf_writer.add_name("Replit") gguf_writer.add_context_length(config.max_seq_len) gguf_writer.add_embedding_length(config.d_model) gguf_writer.add_block_count(block_count) gguf_writer.add_head_count(config.n_heads) gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max) gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon) gguf_writer.add_file_type(ftype) clip_qkv = config.attn_config.clip_qkv if clip_qkv is not None: gguf_writer.add_clamp_kqv(clip_qkv) print("gguf: get sentencepiece tokenizer vocab") tokenizer = SentencePieceProcessor(str(dir_model / "spiece.model")) #print(tokenizer.encode('I believe the meaning of life is')) tokens: list[bytearray] = [] scores: list[float] = [] toktypes: list[int] = [] for i in range(tokenizer.vocab_size()): tokens.append(tokenizer.id_to_piece(i).encode('utf-8')) scores.append(tokenizer.get_score(i)) toktype = gguf.TokenType.NORMAL if tokenizer.is_unknown(i): toktype = gguf.TokenType.UNKNOWN elif tokenizer.is_control(i): toktype = gguf.TokenType.CONTROL elif tokenizer.is_unused(i): toktype = gguf.TokenType.UNUSED elif tokenizer.is_byte(i): toktype = gguf.TokenType.BYTE toktypes.append(toktype) gguf_writer.add_tokenizer_model("llama") # sentencepiece gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) special_vocab.add_to_gguf(gguf_writer) print("gguf: get tensor metadata") tensor_map = gguf.get_tensor_name_map(ARCH, block_count) list_vars = model.state_dict() for name in list_vars.keys(): print(name, list_vars[name].shape, list_vars[name].dtype) print(config) for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable:", name, "with shape:", data.shape) n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if ftype == 1 and name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 elif ftype == 1 or data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() print(f"gguf: model successfully exported to '{fname_out}'") print()