gpt4all/gpt4all-api/gpt4all_api/app/api_v1/routes/chat.py
Andriy Mulyar 633e2a2137
GPT4All API Scaffolding. Matches OpenAI OpenAPI spec for chats and completions (#839)
* GPT4All API Scaffolding. Matches OpenAI OpenAI spec for engines, chats and completions

* Edits for docker building

* FastAPI app builds and pydantic models are accurate

* Added groovy download into dockerfile

* improved dockerfile

* Chat completions endpoint edits

* API uni test sketch

* Working example of groovy inference with open ai api

* Added lines to test

* Set default to mpt
2023-06-28 14:28:52 -04:00

64 lines
1.6 KiB
Python

from fastapi import APIRouter, Depends, Response, Security, status
from pydantic import BaseModel, Field
from typing import List, Dict
import logging
import time
from api_v1.settings import settings
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
### This should follow https://github.com/openai/openai-openapi/blob/master/openapi.yaml
class ChatCompletionMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = Field(..., description='The model to generate a completion from.')
messages: List[ChatCompletionMessage] = Field(..., description='The model to generate a completion from.')
class ChatCompletionChoice(BaseModel):
message: ChatCompletionMessage
index: int
finish_reason: str
class ChatCompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: str = 'text_completion'
created: int
model: str
choices: List[ChatCompletionChoice]
usage: ChatCompletionUsage
router = APIRouter(prefix="/chat", tags=["Completions Endpoints"])
@router.post("/completions", response_model=ChatCompletionResponse)
async def chat_completion(request: ChatCompletionRequest):
'''
Completes a GPT4All model response.
'''
return ChatCompletionResponse(
id='asdf',
created=time.time(),
model=request.model,
choices=[{}],
usage={
'prompt_tokens': 0,
'completion_tokens': 0,
'total_tokens': 0
}
)