mirror of
				https://github.com/nomic-ai/gpt4all.git
				synced 2025-11-03 23:47:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# Convert GPT-J-6B h5 transformer model to ggml format
 | 
						|
#
 | 
						|
# Load the model using GPTJForCausalLM.
 | 
						|
# Iterate over all variables and write them to a binary file.
 | 
						|
#
 | 
						|
# For each variable, write the following:
 | 
						|
#   - Number of dimensions (int)
 | 
						|
#   - Name length (int)
 | 
						|
#   - Dimensions (int[n_dims])
 | 
						|
#   - Name (char[name_length])
 | 
						|
#   - Data (float[n_dims])
 | 
						|
#
 | 
						|
# By default, the bigger matrices are converted to 16-bit floats.
 | 
						|
# This can be disabled by adding the "ftype" CLI argument.
 | 
						|
#
 | 
						|
# At the start of the ggml file we write the model parameters
 | 
						|
# and vocabulary.
 | 
						|
#
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import sys
 | 
						|
import struct
 | 
						|
import json
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import gguf
 | 
						|
import numpy as np
 | 
						|
from transformers import AutoConfig, AutoTokenizer, GPTJForCausalLM
 | 
						|
from transformers.models.gpt2 import tokenization_gpt2
 | 
						|
 | 
						|
 | 
						|
if not 2 <= len(sys.argv) < 4:
 | 
						|
    print("Usage: python {} dir-model [ftype]\n".format(Path(__file__).name))
 | 
						|
    print("  ftype == 0 -> float32")
 | 
						|
    print("  ftype == 1 -> float16")
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# output in the same directory as the model
 | 
						|
dir_model = Path(sys.argv[1])
 | 
						|
fname_out = dir_model / "ggml-model.gguf"
 | 
						|
 | 
						|
# possible data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
#
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
ftype = 1
 | 
						|
if len(sys.argv) > 2:
 | 
						|
    ftype = int(sys.argv[2])
 | 
						|
    if ftype < 0 or ftype > 1:
 | 
						|
        print("Invalid ftype: " + str(ftype))
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
 | 
						|
 | 
						|
 | 
						|
ARCH = gguf.MODEL_ARCH.GPTJ
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
config = AutoConfig.from_pretrained(dir_model)
 | 
						|
 | 
						|
block_count = config.n_layer
 | 
						|
gguf_writer.add_name("GPT-J")
 | 
						|
gguf_writer.add_context_length(config.n_positions)
 | 
						|
gguf_writer.add_embedding_length(config.n_embd)
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_feed_forward_length(4 * config.n_embd)
 | 
						|
gguf_writer.add_head_count(config.n_head)
 | 
						|
gguf_writer.add_rope_dimension_count(config.rotary_dim)
 | 
						|
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
 | 
						|
gguf_writer.add_file_type(ftype)
 | 
						|
 | 
						|
print("gguf: get gpt2 tokenizer vocab")
 | 
						|
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
						|
 | 
						|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
						|
byte_encoder = tokenization_gpt2.bytes_to_unicode()
 | 
						|
byte_decoder = {v: k for k, v in byte_encoder.items()}
 | 
						|
 | 
						|
tokens: list[bytearray] = []
 | 
						|
 | 
						|
for i in range(config.vocab_size):
 | 
						|
    if i in reverse_vocab:
 | 
						|
        try:
 | 
						|
            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | 
						|
        except KeyError:
 | 
						|
            text = bytearray()
 | 
						|
            for c in reverse_vocab[i]:
 | 
						|
                if ord(c) < 256:  # single byte character
 | 
						|
                    text.append(byte_decoder[c])
 | 
						|
                else:  # multibyte special token character
 | 
						|
                    text.extend(c.encode('utf-8'))
 | 
						|
    else:
 | 
						|
        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
						|
        pad_token = f"[PAD{i}]".encode("utf8")
 | 
						|
        text = bytearray(pad_token)
 | 
						|
 | 
						|
    tokens.append(text)
 | 
						|
 | 
						|
 | 
						|
gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
gguf_writer.add_token_list(tokens)
 | 
						|
 | 
						|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
 | 
						|
special_vocab.add_to_gguf(gguf_writer)
 | 
						|
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
model = GPTJForCausalLM.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
 | 
						|
#print (model)
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
 | 
						|
 | 
						|
list_vars = model.state_dict()
 | 
						|
#print (list_vars)
 | 
						|
 | 
						|
for name in list_vars.keys():
 | 
						|
    data = list_vars[name].squeeze().numpy()
 | 
						|
    print("Processing variable:", name, "with shape:", data.shape)
 | 
						|
 | 
						|
    # we don't need these
 | 
						|
    if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
 | 
						|
        print("  Skipping variable:", name)
 | 
						|
        continue
 | 
						|
 | 
						|
    n_dims = len(data.shape)
 | 
						|
 | 
						|
    # ftype == 0 -> float32, ftype == 1 -> float16
 | 
						|
    ftype_cur = 0
 | 
						|
    if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
 | 
						|
        print("  Converting to float16")
 | 
						|
        data = data.astype(np.float16)
 | 
						|
        ftype_cur = 1
 | 
						|
    elif ftype == 1 or data.dtype != np.float32:
 | 
						|
        print("  Converting to float32")
 | 
						|
        data = data.astype(np.float32)
 | 
						|
        ftype_cur = 0
 | 
						|
 | 
						|
    # map tensor names
 | 
						|
    new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
    if new_name is None:
 | 
						|
        print("Can not map tensor '" + name + "'")
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
print("gguf: write tensors")
 | 
						|
gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
						|
print()
 |