mirror of
				https://github.com/nomic-ai/gpt4all.git
				synced 2025-11-04 07:55:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			92 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Various helper functions and utilities
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
#include <random>
 | 
						|
#include <thread>
 | 
						|
 | 
						|
//
 | 
						|
// CLI argument parsing
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_params {
 | 
						|
    int32_t seed      = -1; // RNG seed
 | 
						|
    int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | 
						|
    int32_t n_predict = 200; // new tokens to predict
 | 
						|
 | 
						|
    // sampling parameters
 | 
						|
    int32_t top_k = 40;
 | 
						|
    float   top_p = 0.9f;
 | 
						|
    float   temp  = 0.9f;
 | 
						|
 | 
						|
    int32_t n_batch = 8; // batch size for prompt processing
 | 
						|
 | 
						|
    std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
 | 
						|
    std::string prompt;
 | 
						|
};
 | 
						|
 | 
						|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | 
						|
 | 
						|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | 
						|
 | 
						|
std::string gpt_random_prompt(std::mt19937 & rng);
 | 
						|
 | 
						|
//
 | 
						|
// Vocab utils
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_vocab {
 | 
						|
    using id    = int32_t;
 | 
						|
    using token = std::string;
 | 
						|
 | 
						|
    std::map<token, id> token_to_id;
 | 
						|
    std::map<id, token> id_to_token;
 | 
						|
    std::vector<std::string> special_tokens;
 | 
						|
 | 
						|
    void add_special_token(const std::string &token) {
 | 
						|
        special_tokens.push_back(token);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
 | 
						|
 | 
						|
// poor-man's JSON parsing
 | 
						|
std::map<std::string, int32_t> json_parse(const std::string & fname);
 | 
						|
 | 
						|
// split text into tokens
 | 
						|
//
 | 
						|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
 | 
						|
//
 | 
						|
// Regex (Python):
 | 
						|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
 | 
						|
//
 | 
						|
// Regex (C++):
 | 
						|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
 | 
						|
//
 | 
						|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
 | 
						|
 | 
						|
// load the tokens from encoder.json
 | 
						|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
 | 
						|
 | 
						|
// sample next token given probabilities for each embedding
 | 
						|
//
 | 
						|
//   - consider only the top K tokens
 | 
						|
//   - from them, consider only the top tokens with cumulative probability > P
 | 
						|
//
 | 
						|
// TODO: not sure if this implementation is correct
 | 
						|
//
 | 
						|
gpt_vocab::id gpt_sample_top_k_top_p(
 | 
						|
        const gpt_vocab & vocab,
 | 
						|
        const size_t actualVocabSize,
 | 
						|
        const int32_t * last_n_tokens_data,
 | 
						|
        int   last_n_tokens_size,
 | 
						|
        const std::vector<float> logits,
 | 
						|
        int    top_k,
 | 
						|
        double top_p,
 | 
						|
        double temp,
 | 
						|
        float repeat_penalty,
 | 
						|
        std::mt19937 & rng);
 |