feat: implement Top-K sampling for improved user control (#1110)

This commit adds Top-K sampling, a feature that allows users to control
the randomness of the generated text by specifying the number of most
probable next words considered by the model. This enhances user control
and potentially improves the quality of the generated outputs.

Fixes: https://github.com/k8sgpt-ai/k8sgpt/issues/1105

Signed-off-by: VaibhavMalik4187 <vaibhavmalik2018@gmail.com>
Co-authored-by: Alex Jones <alexsimonjones@gmail.com>
This commit is contained in:
Vaibhav Malik
2024-05-16 20:11:07 +05:30
committed by GitHub
parent 882c6f5225
commit eda52312ae
8 changed files with 46 additions and 0 deletions

View File

@@ -28,6 +28,7 @@ import (
const (
defaultTemperature float32 = 0.7
defaultTopP float32 = 1.0
defaultTopK int32 = 50
)
var (
@@ -84,6 +85,22 @@ var ServeCmd = &cobra.Command{
}
return float32(topP)
}
topK := func() int32 {
env := os.Getenv("K8SGPT_TOP_K")
if env == "" {
return defaultTopK
}
topK, err := strconv.ParseFloat(env, 32)
if err != nil {
color.Red("Unable to convert topK value: %v", err)
os.Exit(1)
}
if topK < 10 || topK > 100 {
color.Red("Error: topK ranges from 1 to 100.")
os.Exit(1)
}
return int32(topK)
}
// Check for env injection
backend = os.Getenv("K8SGPT_BACKEND")
password := os.Getenv("K8SGPT_PASSWORD")
@@ -104,6 +121,7 @@ var ServeCmd = &cobra.Command{
ProxyEndpoint: proxyEndpoint,
Temperature: temperature(),
TopP: topP(),
TopK: topK(),
}
configAI.Providers = append(configAI.Providers, *aiProvider)