diff --git a/tests/integration/kubernetes/k8s-nvidia-nim.bats b/tests/integration/kubernetes/k8s-nvidia-nim.bats new file mode 100644 index 0000000000..aba47ec553 --- /dev/null +++ b/tests/integration/kubernetes/k8s-nvidia-nim.bats @@ -0,0 +1,308 @@ +#!/usr/bin/env bats +# +# Copyright (c) 2025 NVIDIA Corporation +# +# SPDX-License-Identifier: Apache-2.0 +# + +load "${BATS_TEST_DIRNAME}/../../common.bash" +load "${BATS_TEST_DIRNAME}/tests_common.sh" + +export POD_NAME_INSTRUCT="nvidia-nim-llama-3-1-8b-instruct" +export POD_NAME_EMBEDQA="nvidia-nim-llama-3-2-nv-embedqa-1b-v2" + +export POD_SECRET_INSTRUCT="ngc-secret-instruct" + +export DOCKER_CONFIG_JSON=$( + echo -n "{\"auths\":{\"nvcr.io\":{\"username\":\"\$oauthtoken\",\"password\":\"${NGC_API_KEY}\",\"auth\":\"$(echo -n "\$oauthtoken:${NGC_API_KEY}" | base64 -w0)\"}}}" | + base64 -w0 +) + +setup_file() { + dpkg -s jq 2>&1 >/dev/null || sudo apt -y install jq + + export PYENV_ROOT="$HOME/.pyenv" + [[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH" + eval "$(pyenv init - bash)" + + python3 -m venv ${HOME}/.cicd/venv + + get_pod_config_dir + + pod_instruct_yaml_in="${pod_config_dir}/${POD_NAME_INSTRUCT}.yaml.in" + pod_instruct_yaml="${pod_config_dir}/${POD_NAME_INSTRUCT}.yaml" + + envsubst <"${pod_instruct_yaml_in}" >"${pod_instruct_yaml}" + + export POD_INSTRUCT_YAML="${pod_instruct_yaml}" +} + +@test "NVIDIA NIM Llama 3.1-8b Instruct" { + kubectl apply -f "${POD_INSTRUCT_YAML}" + kubectl wait --for=condition=Ready --timeout=500s pod "${POD_NAME_INSTRUCT}" + POD_IP_INSTRUCT=$(kubectl get pod "${POD_NAME_INSTRUCT}" -o jsonpath='{.status.podIP}') + [ -n "${POD_IP_INSTRUCT}" ] + + echo POD_IP_INSTRUCT=${POD_IP_INSTRUCT} >"$BATS_SUITE_TMPDIR/env" + echo "# POD_IP_INSTRUCT=${POD_IP_INSTRUCT}" >&3 +} + +@test "NVIDIA NIM Llama 3.2 Embedqa" { + kubectl wait --for=condition=Ready --timeout=500s pod "${POD_NAME_EMBEDQA}" -n nim-embedqa + POD_IP_EMBEDQA=$(kubectl get pod "${POD_NAME_EMBEDQA}" -o jsonpath='{.status.podIP}' -n nim-embedqa) + [ -n "${POD_IP_EMBEDQA}" ] + + echo POD_IP_EMBEDQA=${POD_IP_EMBEDQA} >>"$BATS_SUITE_TMPDIR/env" + echo "# POD_IP_EMBEDQA=${POD_IP_EMBEDQA}" >&3 +} + +@test "List of models available for inference" { + source "$BATS_SUITE_TMPDIR/env" + [ -n "${POD_IP_INSTRUCT}" ] + + run curl -sX GET "http://${POD_IP_INSTRUCT}:8000/v1/models" + [ "$status" -eq 0 ] + + export MODEL_NAME=$(echo "${output}" | jq '.data[0].id' | tr -d '"') + [ -n "${MODEL_NAME}" ] + echo MODEL_NAME=${MODEL_NAME} >>"$BATS_SUITE_TMPDIR/env" + echo "# MODEL_NAME=${MODEL_NAME}" >&3 + +} + +@test "Simple OpenAI completion request" { + source "$BATS_SUITE_TMPDIR/env" + [ -n ${POD_IP_INSTRUCT} ] + [ -n ${MODEL_NAME} ] + + QUESTION="What are Kata Containers?" + + run curl -sX 'POST' \ + "http://${POD_IP_INSTRUCT}:8000/v1/completions" \ + -H "accept: application/json" \ + -H "Content-Type: application/json" \ + -d "{\"model\": \"${MODEL_NAME}\", \"prompt\": \"${QUESTION}\", \"max_tokens\": 64}" + + ANWSER=$(echo ${output} | jq '.choices[0].text') + [ -n "${ANWSER}" ] + + echo "# QUESTION: ${QUESTION}" >&3 + echo "# ANWSER: ${ANWSER}" >&3 +} + +@test "Setup the LangChain flow" { + source ${HOME}/.cicd/venv/bin/activate + + pip install --upgrade pip + [[ "$(pip show langchain 2>/dev/null | awk '/^Version:/{print $2}')" = "0.2.5" ]] || pip install langchain==0.2.5 + [[ "$(pip show langchain-nvidia-ai-endpoints 2>/dev/null | awk '/^Version:/{print $2}')" = "0.1.2" ]] || pip install langchain-nvidia-ai-endpoints==0.1.2 + [[ "$(pip show faiss-gpu 2>/dev/null | awk '/^Version:/{print $2}')" = "1.7.2" ]] || pip install faiss-gpu==1.7.2 + [[ "$(pip show langchain-community 2>/dev/null | awk '/^Version:/{print $2}')" = "0.2.5" ]] || pip install langchain-community==0.2.5 + [[ "$(pip show beautifulsoup4 2>/dev/null | awk '/^Version:/{print $2}')" = "4.13.4" ]] || pip install beautifulsoup4==4.13.4 +} + +@test "LangChain NVIDIA AI Endpoints" { + source "$BATS_SUITE_TMPDIR/env" + [ -n ${POD_IP_INSTRUCT} ] + [ -n ${MODEL_NAME} ] + + QUESTION="What is the capital of France?" + ANWSER="The capital of France is Paris." + + source ${HOME}/.cicd/venv/bin/activate + cat <<-EOF >${HOME}/.cicd/venv/langchain_nim.py + from langchain_nvidia_ai_endpoints import ChatNVIDIA + + llm = ChatNVIDIA(base_url="http://${POD_IP_INSTRUCT}:8000/v1", model="${MODEL_NAME}", temperature=0.1, max_tokens=1000, top_p=1.0) + + result = llm.invoke("${QUESTION}") + print(result.content) + EOF + run python3 ${HOME}/.cicd/venv/langchain_nim.py + + [ "${status}" -eq 0 ] + [ "${output}" = "${ANWSER}" ] +EOF +} + +@test "Kata Documentation RAG" { + source "$BATS_SUITE_TMPDIR/env" + [ -n ${POD_IP_EMBEDQA} ] + [ -n ${POD_IP_INSTRUCT} ] + + source ${HOME}/.cicd/venv/bin/activate + cat <${HOME}/.cicd/venv/langchain_nim_kata_rag.py +import os +from langchain.chains import ConversationalRetrievalChain, LLMChain +from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT, QA_PROMPT +from langchain.chains.question_answering import load_qa_chain +from langchain.memory import ConversationBufferMemory +from langchain_community.vectorstores import FAISS +from langchain.text_splitter import RecursiveCharacterTextSplitter +from langchain_nvidia_ai_endpoints import ChatNVIDIA +from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +import re +from typing import List, Union + +import requests +from bs4 import BeautifulSoup + +def html_document_loader(url: Union[str, bytes]) -> str: + """ + Loads the HTML content of a document from a given URL and return it's content. + + Args: + url: The URL of the document. + + Returns: + The content of the document. + + Raises: + Exception: If there is an error while making the HTTP request. + + """ + try: + response = requests.get(url) + html_content = response.text + except Exception as e: + print(f"Failed to load {url} due to exception {e}") + return "" + + try: + # Create a Beautiful Soup object to parse html + soup = BeautifulSoup(html_content, "html.parser") + + # Remove script and style tags + for script in soup(["script", "style"]): + script.extract() + + # Get the plain text from the HTML document + text = soup.get_text() + + # Remove excess whitespace and newlines + text = re.sub("\s+", " ", text).strip() + + return text + except Exception as e: + print(f"Exception {e} while loading document") + return "" + +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +def create_embeddings(embedding_path: str = "./data/nv_embedding"): + + embedding_path = "./data/nv_embedding" + print(f"Storing embeddings to {embedding_path}") + + # List of web pages containing Kata technical documentation + urls = [ + "https://katacontainers.io/", + "https://katacontainers.io/learn", + "https://github.com/kata-containers/kata-containers/releases", + ] + + documents = [] + for url in urls: + document = html_document_loader(url) + documents.append(document) + + + text_splitter = RecursiveCharacterTextSplitter( + chunk_size=1000, + chunk_overlap=0, + length_function=len, + ) + texts = text_splitter.create_documents(documents) + index_docs(url, text_splitter, texts, embedding_path) + print("Generated embedding successfully") +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +def index_docs(url: Union[str, bytes], splitter, documents: List[str], dest_embed_dir) -> None: + """ + Split the document into chunks and create embeddings for the document + + Args: + url: Source url for the document. + splitter: Splitter used to split the document + documents: list of documents whose embeddings needs to be created + dest_embed_dir: destination directory for embeddings + + Returns: + None + """ + embeddings = NVIDIAEmbeddings(base_url="http://${POD_IP_EMBEDQA}:8000/v1", model="nvidia/llama-3.2-nv-embedqa-1b-v2") + + for document in documents: + texts = splitter.split_text(document.page_content) + + # metadata to attach to document + metadatas = [document.metadata] + + # create embeddings and add to vector store + if os.path.exists(dest_embed_dir): + update = FAISS.load_local(folder_path=dest_embed_dir, embeddings=embeddings, allow_dangerous_deserialization=True) + update.add_texts(texts, metadatas=metadatas) + update.save_local(folder_path=dest_embed_dir) + else: + docsearch = FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas) + docsearch.save_local(folder_path=dest_embed_dir) +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +create_embeddings() + +embedding_model = NVIDIAEmbeddings(base_url="http://${POD_IP_EMBEDQA}:8000/v1", model="nvidia/llama-3.2-nv-embedqa-1b-v2") +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +# Embed documents +embedding_path = "./data/nv_embedding" +docsearch = FAISS.load_local(folder_path=embedding_path, embeddings=embedding_model, allow_dangerous_deserialization=True) +EOF + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +llm = ChatNVIDIA(base_url="http://${POD_IP_INSTRUCT}:8000/v1", model="meta/llama3-8b-instruct", temperature=0.1, max_tokens=1000, top_p=1.0) + +memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) + +qa_prompt=QA_PROMPT + +doc_chain = load_qa_chain(llm, chain_type="stuff", prompt=QA_PROMPT) + +qa = ConversationalRetrievalChain.from_llm( + llm=llm, + retriever=docsearch.as_retriever(), + chain_type="stuff", + memory=memory, + combine_docs_chain_kwargs={'prompt': qa_prompt}, +) + +EOF + + QUESTION="What is the latest Kata Containers release?" + + cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py +query = "${QUESTION}" +result = qa({"question": query}) +print("#"+ result.get("answer")) + +EOF + + run python3 ${HOME}/.cicd/venv/langchain_nim_kata_rag.py + [ "$status" -eq 0 ] + + ANWSER=$(echo ${output} | cut -d '#' -f2) + [ -n "${ANWSER}" ] + + echo "# QUESTION: ${QUESTION}" >&3 + echo "# ANWSER: ${ANWSER}" >&3 +} + +teardown_file() { + kubectl delete -f "${POD_INSTRUCT_YAML}" +}