gpu: Add NIM bats test

We're running a simple NIM container to test if the GPUs
are working properly

Signed-off-by: Zvonko Kaiser <zkaiser@nvidia.com>
This commit is contained in:
Zvonko Kaiser 2025-03-12 16:08:01 +00:00
parent 79bf86d71d
commit c023817a8e
2 changed files with 243 additions and 0 deletions

View File

@ -64,6 +64,8 @@ jobs:
- name: Run tests
timeout-minutes: 30
run: bash tests/integration/kubernetes/gha-run.sh run-nv-tests
env:
NGC_API_KEY: ${{ secrets.NGC_API_KEY }}
- name: Collect artifacts ${{ matrix.vmm }}
if: always()

View File

@ -0,0 +1,241 @@
#!/usr/bin/env bats
#
# Copyright (c) 2025 NVIDIA Corporation
#
# SPDX-License-Identifier: Apache-2.0
#
load "${BATS_TEST_DIRNAME}/../../common.bash"
load "${BATS_TEST_DIRNAME}/tests_common.sh"
export POD_NAME="nvidia-nim-llama-3-1-8b-instruct"
export DOCKER_CONFIG_JSON=$(
echo -n "{\"auths\":{\"nvcr.io\":{\"username\":\"\$oauthtoken\",\"password\":\"${NGC_API_KEY}\",\"auth\":\"$(echo -n "\$oauthtoken:${NGC_API_KEY}" | base64 -w0)\"}}}" \
| base64 -w0
)
setup() {
dpkg -s python3-pip 2>&1 >/dev/null || sudo apt -y install python3-pip
dpkg -s python3-venv 2>&1 >/dev/null || sudo apt -y install python3-venv
python3 -m venv ${HOME}/.cicd/venv
get_pod_config_dir
pod_yaml_in="${pod_config_dir}/pod-nvidia-nim-llama-3.1-8b-instruct.yaml.in"
pod_yaml="${pod_config_dir}/pod-nvidia-nim-llama-3.1-8b-instruct.yaml"
envsubst < "${pod_yaml_in}" > "${pod_yaml}"
}
@test "NVIDIA NIM Llama 3.1-8b Instruct" {
kubectl apply -f "${pod_yaml}"
kubectl wait --for=condition=Ready --timeout=500s pod "${POD_NAME}"
export POD_IP=$(kubectl get pod "${POD_NAME}" -o jsonpath='{.status.podIP}')
}
@test "List of models available for inference" {
export MODEL_NAME=$(curl -sX GET "http://${POD_IP}:8000/v1/models" | jq .data[0].id | tr -d '"')
echo $MODEL_NAME
}
@test "Simple OpenAI completion request" {
curl -X 'POST' \
"http://${POD_IP}:8000/v1/completions" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"model\": \"${MODEL_NAME}\", \"prompt\": \"Once upon a time\", \"max_tokens\": 64}" | jq .choices[0].text
}
@test "Setup the LangChain flow" {
source ${HOME}/.cicd/venv/bin/activate
pip install --upgrade pip
pip install langchain=="0.2.5"
pip install langchain-nvidia-ai-endpoints=="0.1.2"
pip install faiss-cpu=="1.10.0"
}
@test "LangChain NVIDIA AI Endpoints" {
source ${HOME}/.cicd/venv/bin/activate
cat <<-EOF > ${HOME}/.cicd/venv/langchain_nim.py
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(base_url="http://${POD_IP}:8000/v1", model="${MODEL_NAME}", temperature=0.1, max_tokens=1000, top_p=1.0)
result = llm.invoke("What is the capital of France?")
print(result.content)
EOF
run python3.10 ${HOME}/.cicd/venv/langchain_nim.py
[ "$status" -eq 0 ]
[ "$output" = "The capital of France is Paris." ]
}
@test "Kata Documentation RAG" {
source ${HOME}/.cicd/venv/bin/activate
cat <<EOF > ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
import os
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT, QA_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
import re
from typing import List, Union
import requests
from bs4 import BeautifulSoup
def html_document_loader(url: Union[str, bytes]) -> str:
"""
Loads the HTML content of a document from a given URL and return it's content.
Args:
url: The URL of the document.
Returns:
The content of the document.
Raises:
Exception: If there is an error while making the HTTP request.
"""
try:
response = requests.get(url)
html_content = response.text
except Exception as e:
print(f"Failed to load {url} due to exception {e}")
return ""
try:
# Create a Beautiful Soup object to parse html
soup = BeautifulSoup(html_content, "html.parser")
# Remove script and style tags
for script in soup(["script", "style"]):
script.extract()
# Get the plain text from the HTML document
text = soup.get_text()
# Remove excess whitespace and newlines
text = re.sub("\s+", " ", text).strip()
return text
except Exception as e:
print(f"Exception {e} while loading document")
return ""
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
def create_embeddings(embedding_path: str = "./data/nv_embedding"):
embedding_path = "./data/nv_embedding"
print(f"Storing embeddings to {embedding_path}")
# List of web pages containing Kata technical documentation
urls = [
"https://katacontainers.io/",
"https://katacontainers.io/learn/",
]
documents = []
for url in urls:
document = html_document_loader(url)
documents.append(document)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=0,
length_function=len,
)
texts = text_splitter.create_documents(documents)
index_docs(url, text_splitter, texts, embedding_path)
print("Generated embedding successfully")
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
def index_docs(url: Union[str, bytes], splitter, documents: List[str], dest_embed_dir) -> None:
"""
Split the document into chunks and create embeddings for the document
Args:
url: Source url for the document.
splitter: Splitter used to split the document
documents: list of documents whose embeddings needs to be created
dest_embed_dir: destination directory for embeddings
Returns:
None
"""
embeddings = NVIDIAEmbeddings(model="NV-Embed-QA", truncate="END")
for document in documents:
texts = splitter.split_text(document.page_content)
# metadata to attach to document
metadatas = [document.metadata]
# create embeddings and add to vector store
if os.path.exists(dest_embed_dir):
update = FAISS.load_local(folder_path=dest_embed_dir, embeddings=embeddings, allow_dangerous_deserialization=True)
update.add_texts(texts, metadatas=metadatas)
update.save_local(folder_path=dest_embed_dir)
else:
docsearch = FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas)
docsearch.save_local(folder_path=dest_embed_dir)
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
create_embeddings()
embedding_model = NVIDIAEmbeddings(model="NV-Embed-QA", truncate="END")
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
# Embed documents
embedding_path = "./data/nv_embedding"
docsearch = FAISS.load_local(folder_path=embedding_path, embeddings=embedding_model, allow_dangerous_deserialization=True)
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
llm = ChatNVIDIA(base_url="http://${POD_IP}:8000/v1", model="${MODEL_NAME}", temperature=0.1, max_tokens=1000, top_p=1.0)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa_prompt=QA_PROMPT
doc_chain = load_qa_chain(llm, chain_type="stuff", prompt=QA_PROMPT)
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=docsearch.as_retriever(),
chain_type="stuff",
memory=memory,
combine_docs_chain_kwargs={'prompt': qa_prompt},
)
EOF
cat <<EOF >> ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
query = "What is Kata Containers?"
result = qa({"question": query})
print(result.get("answer"))
EOF
run python3.10 ${HOME}/.cicd/venv/langchain_nim_kata_rag.py
# [ "$status" -eq 0 ]
# [ "$output" = "The NVIDIA Jetson Nano Developer Kit is a small, powerful computer designed for AI and robotics applications." ]
}
teardown() {
kubectl describe "pod/$POD_NAME"
kubectl delete pod "$POD_NAME"
}