mirror of
https://github.com/kata-containers/kata-containers.git
synced 2025-04-28 19:54:35 +00:00
doc: Added initial doc update for NV GPUs
Fixed rpm vs deb references Update to the shell portion Fixes #3379 Signed-off-by: Zvonko Kaiser <zkaiser@nvidia.com>
This commit is contained in:
parent
934788eb53
commit
dd4bd7f471
@ -3,4 +3,4 @@
|
||||
Kata Containers supports passing certain GPUs from the host into the container. Select the GPU vendor for detailed information:
|
||||
|
||||
- [Intel](Intel-GPU-passthrough-and-Kata.md)
|
||||
- [Nvidia](Nvidia-GPU-passthrough-and-Kata.md)
|
||||
- [NVIDIA](NVIDIA-GPU-passthrough-and-Kata.md)
|
||||
|
372
docs/use-cases/NVIDIA-GPU-passthrough-and-Kata.md
Normal file
372
docs/use-cases/NVIDIA-GPU-passthrough-and-Kata.md
Normal file
@ -0,0 +1,372 @@
|
||||
# Using NVIDIA GPU device with Kata Containers
|
||||
|
||||
An NVIDIA GPU device can be passed to a Kata Containers container using GPU
|
||||
passthrough (NVIDIA GPU pass-through mode) as well as GPU mediated passthrough
|
||||
(NVIDIA vGPU mode).
|
||||
|
||||
NVIDIA GPU pass-through mode, an entire physical GPU is directly assigned to one
|
||||
VM, bypassing the NVIDIA Virtual GPU Manager. In this mode of operation, the GPU
|
||||
is accessed exclusively by the NVIDIA driver running in the VM to which it is
|
||||
assigned. The GPU is not shared among VMs.
|
||||
|
||||
NVIDIA Virtual GPU (vGPU) enables multiple virtual machines (VMs) to have
|
||||
simultaneous, direct access to a single physical GPU, using the same NVIDIA
|
||||
graphics drivers that are deployed on non-virtualized operating systems. By
|
||||
doing this, NVIDIA vGPU provides VMs with unparalleled graphics performance,
|
||||
compute performance, and application compatibility, together with the
|
||||
cost-effectiveness and scalability brought about by sharing a GPU among multiple
|
||||
workloads. A vGPU can be either time-sliced or Multi-Instance GPU (MIG)-backed
|
||||
with [MIG-slices](https://docs.nvidia.com/datacenter/tesla/mig-user-guide/).
|
||||
|
||||
| Technology | Description | Behavior | Detail |
|
||||
| --- | --- | --- | --- |
|
||||
| NVIDIA GPU pass-through mode | GPU passthrough | Physical GPU assigned to a single VM | Direct GPU assignment to VM without limitation |
|
||||
| NVIDIA vGPU time-sliced | GPU time-sliced | Physical GPU time-sliced for multiple VMs | Mediated passthrough |
|
||||
| NVIDIA vGPU MIG-backed | GPU with MIG-slices | Physical GPU MIG-sliced for multiple VMs | Mediated passthrough |
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
NVIDIA GPUs Recommended for Virtualization:
|
||||
|
||||
- NVIDIA Tesla (T4, M10, P6, V100 or newer)
|
||||
- NVIDIA Quadro RTX 6000/8000
|
||||
|
||||
## Host BIOS Requirements
|
||||
|
||||
Some hardware requires a larger PCI BARs window, for example, NVIDIA Tesla P100,
|
||||
K40m
|
||||
|
||||
```sh
|
||||
$ lspci -s d0:00.0 -vv | grep Region
|
||||
Region 0: Memory at e7000000 (32-bit, non-prefetchable) [size=16M]
|
||||
Region 1: Memory at 222800000000 (64-bit, prefetchable) [size=32G] # Above 4G
|
||||
Region 3: Memory at 223810000000 (64-bit, prefetchable) [size=32M]
|
||||
```
|
||||
|
||||
For large BARs devices, MMIO mapping above 4G address space should be `enabled`
|
||||
in the PCI configuration of the BIOS.
|
||||
|
||||
Some hardware vendors use different name in BIOS, such as:
|
||||
|
||||
- Above 4G Decoding
|
||||
- Memory Hole for PCI MMIO
|
||||
- Memory Mapped I/O above 4GB
|
||||
|
||||
If one is using a GPU based on the Ampere architecture and later additionally
|
||||
SR-IOV needs to be enabled for the vGPU use-case.
|
||||
|
||||
The following steps outline the workflow for using an NVIDIA GPU with Kata.
|
||||
|
||||
## Host Kernel Requirements
|
||||
|
||||
The following configurations need to be enabled on your host kernel:
|
||||
|
||||
- `CONFIG_VFIO`
|
||||
- `CONFIG_VFIO_IOMMU_TYPE1`
|
||||
- `CONFIG_VFIO_MDEV`
|
||||
- `CONFIG_VFIO_MDEV_DEVICE`
|
||||
- `CONFIG_VFIO_PCI`
|
||||
|
||||
Your host kernel needs to be booted with `intel_iommu=on` on the kernel command
|
||||
line.
|
||||
|
||||
## Install and configure Kata Containers
|
||||
|
||||
To use non-large BARs devices (for example, NVIDIA Tesla T4), you need Kata
|
||||
version 1.3.0 or above. Follow the [Kata Containers setup
|
||||
instructions](../install/README.md) to install the latest version of Kata.
|
||||
|
||||
To use large BARs devices (for example, NVIDIA Tesla P100), you need Kata
|
||||
version 1.11.0 or above.
|
||||
|
||||
The following configuration in the Kata `configuration.toml` file as shown below
|
||||
can work:
|
||||
|
||||
Hotplug for PCI devices with small BARs by `acpi_pcihp` (Linux's ACPI PCI
|
||||
Hotplug driver):
|
||||
|
||||
```sh
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = false
|
||||
```
|
||||
|
||||
Hotplug for PCIe devices with large BARs by `pciehp` (Linux's PCIe Hotplug
|
||||
driver):
|
||||
|
||||
```sh
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = true
|
||||
pcie_root_port = 1
|
||||
```
|
||||
|
||||
## Build Kata Containers kernel with GPU support
|
||||
|
||||
The default guest kernel installed with Kata Containers does not provide GPU
|
||||
support. To use an NVIDIA GPU with Kata Containers, you need to build a kernel
|
||||
with the necessary GPU support.
|
||||
|
||||
The following kernel config options need to be enabled:
|
||||
|
||||
```sh
|
||||
# Support PCI/PCIe device hotplug (Required for large BARs device)
|
||||
CONFIG_HOTPLUG_PCI_PCIE=y
|
||||
|
||||
# Support for loading modules (Required for load NVIDIA drivers)
|
||||
CONFIG_MODULES=y
|
||||
CONFIG_MODULE_UNLOAD=y
|
||||
|
||||
# Enable the MMIO access method for PCIe devices (Required for large BARs device)
|
||||
CONFIG_PCI_MMCONFIG=y
|
||||
```
|
||||
|
||||
The following kernel config options need to be disabled:
|
||||
|
||||
```sh
|
||||
# Disable Open Source NVIDIA driver nouveau
|
||||
# It conflicts with NVIDIA official driver
|
||||
CONFIG_DRM_NOUVEAU=n
|
||||
```
|
||||
|
||||
> **Note**: `CONFIG_DRM_NOUVEAU` is normally disabled by default.
|
||||
It is worth checking that it is not enabled in your kernel configuration to
|
||||
prevent any conflicts.
|
||||
|
||||
Build the Kata Containers kernel with the previous config options, using the
|
||||
instructions described in [Building Kata Containers
|
||||
kernel](../../tools/packaging/kernel). For further details on building and
|
||||
installing guest kernels, see [the developer
|
||||
guide](../Developer-Guide.md#install-guest-kernel-images).
|
||||
|
||||
There is an easy way to build a guest kernel that supports NVIDIA GPU:
|
||||
|
||||
```sh
|
||||
## Build guest kernel with ../../tools/packaging/kernel
|
||||
|
||||
# Prepare (download guest kernel source, generate .config)
|
||||
$ ./build-kernel.sh -v 5.15.23 -g nvidia -f setup
|
||||
|
||||
# Build guest kernel
|
||||
$ ./build-kernel.sh -v 5.15.23 -g nvidia build
|
||||
|
||||
# Install guest kernel
|
||||
$ sudo -E ./build-kernel.sh -v 5.15.23 -g nvidia install
|
||||
```
|
||||
|
||||
To build NVIDIA Driver in Kata container, `linux-headers` is required.
|
||||
This is a way to generate deb packages for `linux-headers`:
|
||||
|
||||
> **Note**:
|
||||
> Run `make rpm-pkg` to build the rpm package.
|
||||
> Run `make deb-pkg` to build the deb package.
|
||||
>
|
||||
|
||||
```sh
|
||||
$ cd kata-linux-5.15.23-89
|
||||
$ make deb-pkg
|
||||
```
|
||||
Before using the new guest kernel, please update the `kernel` parameters in
|
||||
`configuration.toml`.
|
||||
|
||||
```sh
|
||||
kernel = "/usr/share/kata-containers/vmlinuz-nvidia-gpu.container"
|
||||
```
|
||||
|
||||
## NVIDIA GPU pass-through mode with Kata Containers
|
||||
|
||||
Use the following steps to pass an NVIDIA GPU device in pass-through mode with Kata:
|
||||
|
||||
1. Find the Bus-Device-Function (BDF) for GPU device on host:
|
||||
|
||||
```sh
|
||||
$ sudo lspci -nn -D | grep -i nvidia
|
||||
0000:d0:00.0 3D controller [0302]: NVIDIA Corporation Device [10de:20b9] (rev a1)
|
||||
```
|
||||
|
||||
> PCI address `0000:d0:00.0` is assigned to the hardware GPU device.
|
||||
> `10de:20b9` is the device ID of the hardware GPU device.
|
||||
|
||||
2. Find the IOMMU group for the GPU device:
|
||||
|
||||
```sh
|
||||
$ BDF="0000:d0:00.0"
|
||||
$ readlink -e /sys/bus/pci/devices/$BDF/iommu_group
|
||||
```
|
||||
|
||||
The previous output shows that the GPU belongs to IOMMU group 192. The next
|
||||
step is to bind the GPU to the VFIO-PCI driver.
|
||||
|
||||
```sh
|
||||
$ BDF="0000:d0:00.0"
|
||||
$ DEV="/sys/bus/pci/devices/$BDF"
|
||||
$ echo "vfio-pci" > $DEV/driver_override
|
||||
$ echo $BDF > $DEV/driver/unbind
|
||||
$ echo $BDF > /sys/bus/pci/drivers_probe
|
||||
# To return the device to the standard driver, we simply clear the
|
||||
# driver_override and reprobe the device, ex:
|
||||
$ echo > $DEV/preferred_driver
|
||||
$ echo $BDF > $DEV/driver/unbind
|
||||
$ echo $BDF > /sys/bus/pci/drivers_probe
|
||||
```
|
||||
|
||||
3. Check the IOMMU group number under `/dev/vfio`:
|
||||
|
||||
```sh
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 zvonkok zvonkok 243, 0 Mar 18 03:06 192
|
||||
crw-rw-rw- 1 root root 10, 196 Mar 18 02:27 vfio
|
||||
```
|
||||
|
||||
4. Start a Kata container with GPU device:
|
||||
|
||||
```sh
|
||||
# You may need to `modprobe vhost-vsock` if you get
|
||||
# host system doesn't support vsock: stat /dev/vhost-vsock
|
||||
$ sudo ctr --debug run --runtime "io.containerd.kata.v2" --device /dev/vfio/192 --rm -t "docker.io/library/archlinux:latest" arch uname -r
|
||||
```
|
||||
|
||||
5. Run `lspci` within the container to verify the GPU device is seen in the list
|
||||
of the PCI devices. Note the vendor-device id of the GPU (`10de:20b9`) in the `lspci` output.
|
||||
|
||||
```sh
|
||||
$ sudo ctr --debug run --runtime "io.containerd.kata.v2" --device /dev/vfio/192 --rm -t "docker.io/library/archlinux:latest" arch sh -c "lspci -nn | grep '10de:20b9'"
|
||||
```
|
||||
|
||||
6. Additionally, you can check the PCI BARs space of the NVIDIA GPU device in the container:
|
||||
|
||||
```sh
|
||||
$ sudo ctr --debug run --runtime "io.containerd.kata.v2" --device /dev/vfio/192 --rm -t "docker.io/library/archlinux:latest" arch sh -c "lspci -s 02:00.0 -vv | grep Region"
|
||||
```
|
||||
|
||||
> **Note**: If you see a message similar to the above, the BAR space of the NVIDIA
|
||||
> GPU has been successfully allocated.
|
||||
|
||||
## NVIDIA vGPU mode with Kata Containers
|
||||
|
||||
NVIDIA vGPU is a licensed product on all supported GPU boards. A software license
|
||||
is required to enable all vGPU features within the guest VM.
|
||||
|
||||
> **TODO**: Will follow up with instructions
|
||||
|
||||
## Install NVIDIA Driver + Toolkit in Kata Containers Guest OS
|
||||
|
||||
Consult the [Developer-Guide](https://github.com/kata-containers/kata-containers/blob/main/docs/Developer-Guide.md#create-a-rootfs-image) on how to create a
|
||||
rootfs base image for a distribution of your choice. This is going to be used as
|
||||
a base for a NVIDIA enabled guest OS. Use the `EXTRA_PKGS` variable to install
|
||||
all the needed packages to compile the drivers. Also copy the kernel development
|
||||
packages from the previous `make deb-pkg` into `$ROOTFS_DIR`.
|
||||
|
||||
```sh
|
||||
export EXTRA_PKGS="gcc make curl gnupg"
|
||||
```
|
||||
|
||||
Having the `$ROOTFS_DIR` exported in the previous step we can now install all the
|
||||
need parts in the guest OS. In this case we have an Ubuntu based rootfs.
|
||||
|
||||
First off all mount the special filesystems into the rootfs
|
||||
|
||||
```sh
|
||||
$ sudo mount -t sysfs -o ro none ${ROOTFS_DIR}/sys
|
||||
$ sudo mount -t proc -o ro none ${ROOTFS_DIR}/proc
|
||||
$ sudo mount -t tmpfs none ${ROOTFS_DIR}/tmp
|
||||
$ sudo mount -o bind,ro /dev ${ROOTFS_DIR}/dev
|
||||
$ sudo mount -t devpts none ${ROOTFS_DIR}/dev/pts
|
||||
```
|
||||
|
||||
Now we can enter `chroot`
|
||||
|
||||
```sh
|
||||
$ sudo chroot ${ROOTFS_DIR}
|
||||
```
|
||||
|
||||
Inside the rootfs one is going to install the drivers and toolkit to enable easy
|
||||
creation of GPU containers with Kata. We can also use this rootfs for any other
|
||||
container not specifically only for GPUs.
|
||||
|
||||
As a prerequisite install the copied kernel development packages
|
||||
|
||||
```sh
|
||||
$ sudo dpkg -i *.deb
|
||||
```
|
||||
|
||||
Get the driver run file, since we need to build the driver against a kernel that
|
||||
is not running on the host we need the ability to specify the exact version we
|
||||
want the driver to build against. Take the kernel version one used for building
|
||||
the NVIDIA kernel (`5.15.23-nvidia-gpu`).
|
||||
|
||||
```sh
|
||||
$ wget https://us.download.nvidia.com/XFree86/Linux-x86_64/510.54/NVIDIA-Linux-x86_64-510.54.run
|
||||
$ chmod +x NVIDIA-Linux-x86_64-510.54.run
|
||||
# Extract the source files so we can run the installer with arguments
|
||||
$ ./NVIDIA-Linux-x86_64-510.54.run -x
|
||||
$ cd NVIDIA-Linux-x86_64-510.54
|
||||
$ ./nvidia-installer -k 5.15.23-nvidia-gpu
|
||||
```
|
||||
Having the drivers installed we need to install the toolkit which will take care
|
||||
of providing the right bits into the container.
|
||||
|
||||
```sh
|
||||
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
$ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
$ curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
$ apt update
|
||||
$ apt install nvidia-container-toolkit
|
||||
```
|
||||
|
||||
Create the hook execution file for Kata:
|
||||
|
||||
```
|
||||
# Content of $ROOTFS_DIR/usr/share/oci/hooks/prestart/nvidia-container-toolkit.sh
|
||||
|
||||
#!/bin/bash -x
|
||||
|
||||
/usr/bin/nvidia-container-toolkit -debug $@
|
||||
```
|
||||
|
||||
As a last step one can do some cleanup of files or package caches. Build the
|
||||
rootfs and configure it for use with Kata according to the development guide.
|
||||
|
||||
Enable the `guest_hook_path` in Kata's `configuration.toml`
|
||||
|
||||
```sh
|
||||
guest_hook_path = "/usr/share/oci/hooks"
|
||||
```
|
||||
|
||||
One has build a NVIDIA rootfs, kernel and now we can run any GPU container
|
||||
without installing the drivers into the container. Check NVIDIA device status
|
||||
with `nvidia-smi`
|
||||
|
||||
```sh
|
||||
$ sudo ctr --debug run --runtime "io.containerd.kata.v2" --device /dev/vfio/192 --rm -t "docker.io/nvidia/cuda:11.6.0-base-ubuntu20.04" cuda nvidia-smi
|
||||
Fri Mar 18 10:36:59 2022
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 510.54 Driver Version: 510.54 CUDA Version: 11.6 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 NVIDIA A30X Off | 00000000:02:00.0 Off | 0 |
|
||||
| N/A 38C P0 67W / 230W | 0MiB / 24576MiB | 0% Default |
|
||||
| | | Disabled |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=============================================================================|
|
||||
| No running processes found |
|
||||
+-----------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
As a last step one can remove the additional packages and files that were added
|
||||
to the `$ROOTFS_DIR` to keep it as small as possible.
|
||||
|
||||
## References
|
||||
|
||||
- [Configuring a VM for GPU Pass-Through by Using the QEMU Command Line](https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#using-gpu-pass-through-red-hat-el-qemu-cli)
|
||||
- https://gitlab.com/nvidia/container-images/driver/-/tree/master
|
||||
- https://github.com/NVIDIA/nvidia-docker/wiki/Driver-containers
|
@ -1,293 +0,0 @@
|
||||
# Using Nvidia GPU device with Kata Containers
|
||||
|
||||
An Nvidia GPU device can be passed to a Kata Containers container using GPU passthrough
|
||||
(Nvidia GPU pass-through mode) as well as GPU mediated passthrough (Nvidia vGPU mode).
|
||||
|
||||
Nvidia GPU pass-through mode, an entire physical GPU is directly assigned to one VM,
|
||||
bypassing the Nvidia Virtual GPU Manager. In this mode of operation, the GPU is accessed
|
||||
exclusively by the Nvidia driver running in the VM to which it is assigned.
|
||||
The GPU is not shared among VMs.
|
||||
|
||||
Nvidia Virtual GPU (vGPU) enables multiple virtual machines (VMs) to have simultaneous,
|
||||
direct access to a single physical GPU, using the same Nvidia graphics drivers that are
|
||||
deployed on non-virtualized operating systems. By doing this, Nvidia vGPU provides VMs
|
||||
with unparalleled graphics performance, compute performance, and application compatibility,
|
||||
together with the cost-effectiveness and scalability brought about by sharing a GPU
|
||||
among multiple workloads.
|
||||
|
||||
| Technology | Description | Behaviour | Detail |
|
||||
| --- | --- | --- | --- |
|
||||
| Nvidia GPU pass-through mode | GPU passthrough | Physical GPU assigned to a single VM | Direct GPU assignment to VM without limitation |
|
||||
| Nvidia vGPU mode | GPU sharing | Physical GPU shared by multiple VMs | Mediated passthrough |
|
||||
|
||||
## Hardware Requirements
|
||||
Nvidia GPUs Recommended for Virtualization:
|
||||
|
||||
- Nvidia Tesla (T4, M10, P6, V100 or newer)
|
||||
- Nvidia Quadro RTX 6000/8000
|
||||
|
||||
## Host BIOS Requirements
|
||||
|
||||
Some hardware requires a larger PCI BARs window, for example, Nvidia Tesla P100, K40m
|
||||
```
|
||||
$ lspci -s 04:00.0 -vv | grep Region
|
||||
Region 0: Memory at c6000000 (32-bit, non-prefetchable) [size=16M]
|
||||
Region 1: Memory at 383800000000 (64-bit, prefetchable) [size=16G] #above 4G
|
||||
Region 3: Memory at 383c00000000 (64-bit, prefetchable) [size=32M]
|
||||
```
|
||||
|
||||
For large BARs devices, MMIO mapping above 4G address space should be `enabled`
|
||||
in the PCI configuration of the BIOS.
|
||||
|
||||
Some hardware vendors use different name in BIOS, such as:
|
||||
|
||||
- Above 4G Decoding
|
||||
- Memory Hole for PCI MMIO
|
||||
- Memory Mapped I/O above 4GB
|
||||
|
||||
The following steps outline the workflow for using an Nvidia GPU with Kata.
|
||||
|
||||
## Host Kernel Requirements
|
||||
The following configurations need to be enabled on your host kernel:
|
||||
|
||||
- `CONFIG_VFIO`
|
||||
- `CONFIG_VFIO_IOMMU_TYPE1`
|
||||
- `CONFIG_VFIO_MDEV`
|
||||
- `CONFIG_VFIO_MDEV_DEVICE`
|
||||
- `CONFIG_VFIO_PCI`
|
||||
|
||||
Your host kernel needs to be booted with `intel_iommu=on` on the kernel command line.
|
||||
|
||||
## Install and configure Kata Containers
|
||||
To use non-large BARs devices (for example, Nvidia Tesla T4), you need Kata version 1.3.0 or above.
|
||||
Follow the [Kata Containers setup instructions](../install/README.md)
|
||||
to install the latest version of Kata.
|
||||
|
||||
To use large BARs devices (for example, Nvidia Tesla P100), you need Kata version 1.11.0 or above.
|
||||
|
||||
The following configuration in the Kata `configuration.toml` file as shown below can work:
|
||||
|
||||
Hotplug for PCI devices by `acpi_pcihp` (Linux's ACPI PCI Hotplug driver):
|
||||
```
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = false
|
||||
```
|
||||
|
||||
Hotplug for PCIe devices by `pciehp` (Linux's PCIe Hotplug driver):
|
||||
```
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = true
|
||||
pcie_root_port = 1
|
||||
```
|
||||
|
||||
## Build Kata Containers kernel with GPU support
|
||||
The default guest kernel installed with Kata Containers does not provide GPU support.
|
||||
To use an Nvidia GPU with Kata Containers, you need to build a kernel with the
|
||||
necessary GPU support.
|
||||
|
||||
The following kernel config options need to be enabled:
|
||||
```
|
||||
# Support PCI/PCIe device hotplug (Required for large BARs device)
|
||||
CONFIG_HOTPLUG_PCI_PCIE=y
|
||||
|
||||
# Support for loading modules (Required for load Nvidia drivers)
|
||||
CONFIG_MODULES=y
|
||||
CONFIG_MODULE_UNLOAD=y
|
||||
|
||||
# Enable the MMIO access method for PCIe devices (Required for large BARs device)
|
||||
CONFIG_PCI_MMCONFIG=y
|
||||
```
|
||||
|
||||
The following kernel config options need to be disabled:
|
||||
```
|
||||
# Disable Open Source Nvidia driver nouveau
|
||||
# It conflicts with Nvidia official driver
|
||||
CONFIG_DRM_NOUVEAU=n
|
||||
```
|
||||
> **Note**: `CONFIG_DRM_NOUVEAU` is normally disabled by default.
|
||||
It is worth checking that it is not enabled in your kernel configuration to prevent any conflicts.
|
||||
|
||||
|
||||
Build the Kata Containers kernel with the previous config options,
|
||||
using the instructions described in [Building Kata Containers kernel](../../tools/packaging/kernel).
|
||||
For further details on building and installing guest kernels,
|
||||
see [the developer guide](../Developer-Guide.md#install-guest-kernel-images).
|
||||
|
||||
There is an easy way to build a guest kernel that supports Nvidia GPU:
|
||||
```
|
||||
## Build guest kernel with ../../tools/packaging/kernel
|
||||
|
||||
# Prepare (download guest kernel source, generate .config)
|
||||
$ ./build-kernel.sh -v 4.19.86 -g nvidia -f setup
|
||||
|
||||
# Build guest kernel
|
||||
$ ./build-kernel.sh -v 4.19.86 -g nvidia build
|
||||
|
||||
# Install guest kernel
|
||||
$ sudo -E ./build-kernel.sh -v 4.19.86 -g nvidia install
|
||||
/usr/share/kata-containers/vmlinux-nvidia-gpu.container -> vmlinux-4.19.86-70-nvidia-gpu
|
||||
/usr/share/kata-containers/vmlinuz-nvidia-gpu.container -> vmlinuz-4.19.86-70-nvidia-gpu
|
||||
```
|
||||
|
||||
To build Nvidia Driver in Kata container, `kernel-devel` is required.
|
||||
This is a way to generate rpm packages for `kernel-devel`:
|
||||
```
|
||||
$ cd kata-linux-4.19.86-68
|
||||
$ make rpm-pkg
|
||||
Output RPMs:
|
||||
~/rpmbuild/RPMS/x86_64/kernel-devel-4.19.86_nvidia_gpu-1.x86_64.rpm
|
||||
```
|
||||
> **Note**:
|
||||
> - `kernel-devel` should be installed in Kata container before run Nvidia driver installer.
|
||||
> - Run `make deb-pkg` to build the deb package.
|
||||
|
||||
Before using the new guest kernel, please update the `kernel` parameters in `configuration.toml`.
|
||||
```
|
||||
kernel = "/usr/share/kata-containers/vmlinuz-nvidia-gpu.container"
|
||||
```
|
||||
|
||||
## Nvidia GPU pass-through mode with Kata Containers
|
||||
Use the following steps to pass an Nvidia GPU device in pass-through mode with Kata:
|
||||
|
||||
1. Find the Bus-Device-Function (BDF) for GPU device on host:
|
||||
```
|
||||
$ sudo lspci -nn -D | grep -i nvidia
|
||||
0000:04:00.0 3D controller [0302]: NVIDIA Corporation Device [10de:15f8] (rev a1)
|
||||
0000:84:00.0 3D controller [0302]: NVIDIA Corporation Device [10de:15f8] (rev a1)
|
||||
```
|
||||
> PCI address `0000:04:00.0` is assigned to the hardware GPU device.
|
||||
> `10de:15f8` is the device ID of the hardware GPU device.
|
||||
|
||||
2. Find the IOMMU group for the GPU device:
|
||||
```
|
||||
$ BDF="0000:04:00.0"
|
||||
$ readlink -e /sys/bus/pci/devices/$BDF/iommu_group
|
||||
/sys/kernel/iommu_groups/45
|
||||
```
|
||||
The previous output shows that the GPU belongs to IOMMU group 45.
|
||||
|
||||
3. Check the IOMMU group number under `/dev/vfio`:
|
||||
```
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 248, 0 Feb 28 09:57 45
|
||||
crw------- 1 root root 248, 1 Feb 28 09:57 54
|
||||
crw-rw-rw- 1 root root 10, 196 Feb 28 09:57 vfio
|
||||
```
|
||||
|
||||
4. Start a Kata container with GPU device:
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --cap-add=ALL --device /dev/vfio/45 centos /bin/bash
|
||||
```
|
||||
|
||||
5. Run `lspci` within the container to verify the GPU device is seen in the list
|
||||
of the PCI devices. Note the vendor-device id of the GPU (`10de:15f8`) in the `lspci` output.
|
||||
```
|
||||
$ lspci -nn -D | grep '10de:15f8'
|
||||
0000:01:01.0 3D controller [0302]: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB] [10de:15f8] (rev a1)
|
||||
```
|
||||
|
||||
6. Additionally, you can check the PCI BARs space of the Nvidia GPU device in the container:
|
||||
```
|
||||
$ lspci -s 01:01.0 -vv | grep Region
|
||||
Region 0: Memory at c0000000 (32-bit, non-prefetchable) [disabled] [size=16M]
|
||||
Region 1: Memory at 4400000000 (64-bit, prefetchable) [disabled] [size=16G]
|
||||
Region 3: Memory at 4800000000 (64-bit, prefetchable) [disabled] [size=32M]
|
||||
```
|
||||
> **Note**: If you see a message similar to the above, the BAR space of the Nvidia
|
||||
> GPU has been successfully allocated.
|
||||
|
||||
## Nvidia vGPU mode with Kata Containers
|
||||
|
||||
Nvidia vGPU is a licensed product on all supported GPU boards. A software license
|
||||
is required to enable all vGPU features within the guest VM.
|
||||
|
||||
> **Note**: There is no suitable test environment, so it is not written here.
|
||||
|
||||
|
||||
## Install Nvidia Driver in Kata Containers
|
||||
Download the official Nvidia driver from
|
||||
[https://www.nvidia.com/Download/index.aspx](https://www.nvidia.com/Download/index.aspx),
|
||||
for example `NVIDIA-Linux-x86_64-418.87.01.run`.
|
||||
|
||||
Install the `kernel-devel`(generated in the previous steps) for guest kernel:
|
||||
```
|
||||
$ sudo rpm -ivh kernel-devel-4.19.86_gpu-1.x86_64.rpm
|
||||
```
|
||||
|
||||
Here is an example to extract, compile and install Nvidia driver:
|
||||
```
|
||||
## Extract
|
||||
$ sh ./NVIDIA-Linux-x86_64-418.87.01.run -x
|
||||
|
||||
## Compile and install (It will take some time)
|
||||
$ cd NVIDIA-Linux-x86_64-418.87.01
|
||||
$ sudo ./nvidia-installer -a -q --ui=none \
|
||||
--no-cc-version-check \
|
||||
--no-opengl-files --no-install-libglvnd \
|
||||
--kernel-source-path=/usr/src/kernels/`uname -r`
|
||||
```
|
||||
|
||||
Or just run one command line:
|
||||
```
|
||||
$ sudo sh ./NVIDIA-Linux-x86_64-418.87.01.run -a -q --ui=none \
|
||||
--no-cc-version-check \
|
||||
--no-opengl-files --no-install-libglvnd \
|
||||
--kernel-source-path=/usr/src/kernels/`uname -r`
|
||||
```
|
||||
|
||||
To view detailed logs of the installer:
|
||||
```
|
||||
$ tail -f /var/log/nvidia-installer.log
|
||||
```
|
||||
|
||||
Load Nvidia driver module manually
|
||||
```
|
||||
# Optional(generate modules.dep and map files for Nvidia driver)
|
||||
$ sudo depmod
|
||||
|
||||
# Load module
|
||||
$ sudo modprobe nvidia-drm
|
||||
|
||||
# Check module
|
||||
$ lsmod | grep nvidia
|
||||
nvidia_drm 45056 0
|
||||
nvidia_modeset 1093632 1 nvidia_drm
|
||||
nvidia 18202624 1 nvidia_modeset
|
||||
drm_kms_helper 159744 1 nvidia_drm
|
||||
drm 364544 3 nvidia_drm,drm_kms_helper
|
||||
i2c_core 65536 3 nvidia,drm_kms_helper,drm
|
||||
ipmi_msghandler 49152 1 nvidia
|
||||
```
|
||||
|
||||
|
||||
Check Nvidia device status with `nvidia-smi`
|
||||
```
|
||||
$ nvidia-smi
|
||||
Tue Mar 3 00:03:49 2020
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 10.1 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 Tesla P100-PCIE... Off | 00000000:01:01.0 Off | 0 |
|
||||
| N/A 27C P0 25W / 250W | 0MiB / 16280MiB | 0% Default |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: GPU Memory |
|
||||
| GPU PID Type Process name Usage |
|
||||
|=============================================================================|
|
||||
| No running processes found |
|
||||
+-----------------------------------------------------------------------------+
|
||||
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
- [Configuring a VM for GPU Pass-Through by Using the QEMU Command Line](https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#using-gpu-pass-through-red-hat-el-qemu-cli)
|
||||
- https://gitlab.com/nvidia/container-images/driver/-/tree/master
|
||||
- https://github.com/NVIDIA/nvidia-docker/wiki/Driver-containers
|
Loading…
Reference in New Issue
Block a user