#!/usr/bin/env bats # # Copyright (c) 2025 NVIDIA Corporation # # SPDX-License-Identifier: Apache-2.0 # load "${BATS_TEST_DIRNAME}/../../common.bash" load "${BATS_TEST_DIRNAME}/tests_common.sh" export POD_NAME_INSTRUCT="nvidia-nim-llama-3-1-8b-instruct" export POD_NAME_EMBEDQA="nvidia-nim-llama-3-2-nv-embedqa-1b-v2" export POD_SECRET_INSTRUCT="ngc-secret-instruct" export DOCKER_CONFIG_JSON=$( echo -n "{\"auths\":{\"nvcr.io\":{\"username\":\"\$oauthtoken\",\"password\":\"${NGC_API_KEY}\",\"auth\":\"$(echo -n "\$oauthtoken:${NGC_API_KEY}" | base64 -w0)\"}}}" | base64 -w0 ) setup_file() { dpkg -s jq 2>&1 >/dev/null || sudo apt -y install jq export PYENV_ROOT="$HOME/.pyenv" [[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH" eval "$(pyenv init - bash)" python3 -m venv ${HOME}/.cicd/venv get_pod_config_dir pod_instruct_yaml_in="${pod_config_dir}/${POD_NAME_INSTRUCT}.yaml.in" pod_instruct_yaml="${pod_config_dir}/${POD_NAME_INSTRUCT}.yaml" envsubst <"${pod_instruct_yaml_in}" >"${pod_instruct_yaml}" export POD_INSTRUCT_YAML="${pod_instruct_yaml}" } @test "NVIDIA NIM Llama 3.1-8b Instruct" { kubectl apply -f "${POD_INSTRUCT_YAML}" kubectl wait --for=condition=Ready --timeout=500s pod "${POD_NAME_INSTRUCT}" POD_IP_INSTRUCT=$(kubectl get pod "${POD_NAME_INSTRUCT}" -o jsonpath='{.status.podIP}') [ -n "${POD_IP_INSTRUCT}" ] echo POD_IP_INSTRUCT=${POD_IP_INSTRUCT} >"$BATS_SUITE_TMPDIR/env" echo "# POD_IP_INSTRUCT=${POD_IP_INSTRUCT}" >&3 } @test "NVIDIA NIM Llama 3.2 Embedqa" { kubectl wait --for=condition=Ready --timeout=500s pod "${POD_NAME_EMBEDQA}" -n nim-embedqa POD_IP_EMBEDQA=$(kubectl get pod "${POD_NAME_EMBEDQA}" -o jsonpath='{.status.podIP}' -n nim-embedqa) [ -n "${POD_IP_EMBEDQA}" ] echo POD_IP_EMBEDQA=${POD_IP_EMBEDQA} >>"$BATS_SUITE_TMPDIR/env" echo "# POD_IP_EMBEDQA=${POD_IP_EMBEDQA}" >&3 } @test "List of models available for inference" { source "$BATS_SUITE_TMPDIR/env" [ -n "${POD_IP_INSTRUCT}" ] run curl -sX GET "http://${POD_IP_INSTRUCT}:8000/v1/models" [ "$status" -eq 0 ] export MODEL_NAME=$(echo "${output}" | jq '.data[0].id' | tr -d '"') [ -n "${MODEL_NAME}" ] echo MODEL_NAME=${MODEL_NAME} >>"$BATS_SUITE_TMPDIR/env" echo "# MODEL_NAME=${MODEL_NAME}" >&3 } @test "Simple OpenAI completion request" { source "$BATS_SUITE_TMPDIR/env" [ -n ${POD_IP_INSTRUCT} ] [ -n ${MODEL_NAME} ] QUESTION="What are Kata Containers?" run curl -sX 'POST' \ "http://${POD_IP_INSTRUCT}:8000/v1/completions" \ -H "accept: application/json" \ -H "Content-Type: application/json" \ -d "{\"model\": \"${MODEL_NAME}\", \"prompt\": \"${QUESTION}\", \"max_tokens\": 64}" ANWSER=$(echo ${output} | jq '.choices[0].text') [ -n "${ANWSER}" ] echo "# QUESTION: ${QUESTION}" >&3 echo "# ANWSER: ${ANWSER}" >&3 } @test "Setup the LangChain flow" { source ${HOME}/.cicd/venv/bin/activate pip install --upgrade pip [[ "$(pip show langchain 2>/dev/null | awk '/^Version:/{print $2}')" = "0.2.5" ]] || pip install langchain==0.2.5 [[ "$(pip show langchain-nvidia-ai-endpoints 2>/dev/null | awk '/^Version:/{print $2}')" = "0.1.2" ]] || pip install langchain-nvidia-ai-endpoints==0.1.2 [[ "$(pip show faiss-gpu 2>/dev/null | awk '/^Version:/{print $2}')" = "1.7.2" ]] || pip install faiss-gpu==1.7.2 [[ "$(pip show langchain-community 2>/dev/null | awk '/^Version:/{print $2}')" = "0.2.5" ]] || pip install langchain-community==0.2.5 [[ "$(pip show beautifulsoup4 2>/dev/null | awk '/^Version:/{print $2}')" = "4.13.4" ]] || pip install beautifulsoup4==4.13.4 } @test "LangChain NVIDIA AI Endpoints" { source "$BATS_SUITE_TMPDIR/env" [ -n ${POD_IP_INSTRUCT} ] [ -n ${MODEL_NAME} ] QUESTION="What is the capital of France?" ANWSER="The capital of France is Paris." source ${HOME}/.cicd/venv/bin/activate cat <<-EOF >${HOME}/.cicd/venv/langchain_nim.py from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(base_url="http://${POD_IP_INSTRUCT}:8000/v1", model="${MODEL_NAME}", temperature=0.1, max_tokens=1000, top_p=1.0) result = llm.invoke("${QUESTION}") print(result.content) EOF run python3 ${HOME}/.cicd/venv/langchain_nim.py [ "${status}" -eq 0 ] [ "${output}" = "${ANWSER}" ] EOF } @test "Kata Documentation RAG" { source "$BATS_SUITE_TMPDIR/env" [ -n ${POD_IP_EMBEDQA} ] [ -n ${POD_IP_INSTRUCT} ] source ${HOME}/.cicd/venv/bin/activate cat <${HOME}/.cicd/venv/langchain_nim_kata_rag.py import os from langchain.chains import ConversationalRetrievalChain, LLMChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT, QA_PROMPT from langchain.chains.question_answering import load_qa_chain from langchain.memory import ConversationBufferMemory from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_nvidia_ai_endpoints import ChatNVIDIA from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py import re from typing import List, Union import requests from bs4 import BeautifulSoup def html_document_loader(url: Union[str, bytes]) -> str: """ Loads the HTML content of a document from a given URL and return it's content. Args: url: The URL of the document. Returns: The content of the document. Raises: Exception: If there is an error while making the HTTP request. """ try: response = requests.get(url) html_content = response.text except Exception as e: print(f"Failed to load {url} due to exception {e}") return "" try: # Create a Beautiful Soup object to parse html soup = BeautifulSoup(html_content, "html.parser") # Remove script and style tags for script in soup(["script", "style"]): script.extract() # Get the plain text from the HTML document text = soup.get_text() # Remove excess whitespace and newlines text = re.sub("\s+", " ", text).strip() return text except Exception as e: print(f"Exception {e} while loading document") return "" EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py def create_embeddings(embedding_path: str = "./data/nv_embedding"): embedding_path = "./data/nv_embedding" print(f"Storing embeddings to {embedding_path}") # List of web pages containing Kata technical documentation urls = [ "https://katacontainers.io/", "https://katacontainers.io/learn", "https://github.com/kata-containers/kata-containers/releases", ] documents = [] for url in urls: document = html_document_loader(url) documents.append(document) text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0, length_function=len, ) texts = text_splitter.create_documents(documents) index_docs(url, text_splitter, texts, embedding_path) print("Generated embedding successfully") EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py def index_docs(url: Union[str, bytes], splitter, documents: List[str], dest_embed_dir) -> None: """ Split the document into chunks and create embeddings for the document Args: url: Source url for the document. splitter: Splitter used to split the document documents: list of documents whose embeddings needs to be created dest_embed_dir: destination directory for embeddings Returns: None """ embeddings = NVIDIAEmbeddings(base_url="http://${POD_IP_EMBEDQA}:8000/v1", model="nvidia/llama-3.2-nv-embedqa-1b-v2") for document in documents: texts = splitter.split_text(document.page_content) # metadata to attach to document metadatas = [document.metadata] # create embeddings and add to vector store if os.path.exists(dest_embed_dir): update = FAISS.load_local(folder_path=dest_embed_dir, embeddings=embeddings, allow_dangerous_deserialization=True) update.add_texts(texts, metadatas=metadatas) update.save_local(folder_path=dest_embed_dir) else: docsearch = FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas) docsearch.save_local(folder_path=dest_embed_dir) EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py create_embeddings() embedding_model = NVIDIAEmbeddings(base_url="http://${POD_IP_EMBEDQA}:8000/v1", model="nvidia/llama-3.2-nv-embedqa-1b-v2") EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py # Embed documents embedding_path = "./data/nv_embedding" docsearch = FAISS.load_local(folder_path=embedding_path, embeddings=embedding_model, allow_dangerous_deserialization=True) EOF cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py llm = ChatNVIDIA(base_url="http://${POD_IP_INSTRUCT}:8000/v1", model="meta/llama3-8b-instruct", temperature=0.1, max_tokens=1000, top_p=1.0) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) qa_prompt=QA_PROMPT doc_chain = load_qa_chain(llm, chain_type="stuff", prompt=QA_PROMPT) qa = ConversationalRetrievalChain.from_llm( llm=llm, retriever=docsearch.as_retriever(), chain_type="stuff", memory=memory, combine_docs_chain_kwargs={'prompt': qa_prompt}, ) EOF QUESTION="What is the latest Kata Containers release?" cat <>${HOME}/.cicd/venv/langchain_nim_kata_rag.py query = "${QUESTION}" result = qa({"question": query}) print("#"+ result.get("answer")) EOF run python3 ${HOME}/.cicd/venv/langchain_nim_kata_rag.py [ "$status" -eq 0 ] ANSWER=$(echo ${output} | cut -d '#' -f2) [ -n "${ANSWER}" ] echo "# QUESTION: ${QUESTION}" >&3 echo "# ANSWER: ${ANSWER}" >&3 } teardown_file() { kubectl delete -f "${POD_INSTRUCT_YAML}" }