Files
kata-containers/qemu/qmp.go
Archana Shinde 3273aafd53 scsi: Add function to send device_add qmp command for a scsi device
device_add qmp command for scsi devices accepts additional parameters like
scsi-id and lun. Implement function to add scsi devices. Devices
with drivers "scsi-hd", "scsi-cd" and "scsi-disk" are accepted.

Signed-off-by: Archana Shinde <archana.m.shinde@intel.com>
2018-01-11 18:19:10 -08:00

831 lines
25 KiB
Go

/*
// Copyright (c) 2016 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
package qemu
import (
"bufio"
"container/list"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"time"
"context"
)
// QMPLog is a logging interface used by the qemu package to log various
// interesting pieces of information. Rather than introduce a dependency
// on a given logging package, qemu presents this interface that allows
// clients to provide their own logging type which they can use to
// seamlessly integrate qemu's logs into their own logs. A QMPLog
// implementation can be specified in the QMPConfig structure.
type QMPLog interface {
// V returns true if the given argument is less than or equal
// to the implementation's defined verbosity level.
V(int32) bool
// Infof writes informational output to the log. A newline will be
// added to the output if one is not provided.
Infof(string, ...interface{})
// Warningf writes warning output to the log. A newline will be
// added to the output if one is not provided.
Warningf(string, ...interface{})
// Errorf writes error output to the log. A newline will be
// added to the output if one is not provided.
Errorf(string, ...interface{})
}
type qmpNullLogger struct{}
func (l qmpNullLogger) V(level int32) bool {
return false
}
func (l qmpNullLogger) Infof(format string, v ...interface{}) {
}
func (l qmpNullLogger) Warningf(format string, v ...interface{}) {
}
func (l qmpNullLogger) Errorf(format string, v ...interface{}) {
}
// QMPConfig is a configuration structure that can be used to specify a
// logger and a channel to which logs and QMP events are to be sent. If
// neither of these fields are specified, or are set to nil, no logs will be
// written and no QMP events will be reported to the client.
type QMPConfig struct {
// eventCh can be specified by clients who wish to receive QMP
// events.
EventCh chan<- QMPEvent
// logger is used by the qmpStart function and all the go routines
// it spawns to log information.
Logger QMPLog
}
type qmpEventFilter struct {
eventName string
dataKey string
dataValue string
}
// QMPEvent contains a single QMP event, sent on the QMPConfig.EventCh channel.
type QMPEvent struct {
// The name of the event, e.g., DEVICE_DELETED
Name string
// The data associated with the event. The contents of this map are
// unprocessed by the qemu package. It is simply the result of
// unmarshalling the QMP json event. Here's an example map
// map[string]interface{}{
// "driver": "virtio-blk-pci",
// "drive": "drive_3437843748734873483",
// }
Data map[string]interface{}
// The event's timestamp converted to a time.Time object.
Timestamp time.Time
}
type qmpResult struct {
response interface{}
err error
}
type qmpCommand struct {
ctx context.Context
res chan qmpResult
name string
args map[string]interface{}
filter *qmpEventFilter
resultReceived bool
}
// QMP is a structure that contains the internal state used by startQMPLoop and
// the go routines it spwans. All the contents of this structure are private.
type QMP struct {
cmdCh chan qmpCommand
conn io.ReadWriteCloser
cfg QMPConfig
connectedCh chan<- *QMPVersion
disconnectedCh chan struct{}
version *QMPVersion
}
// QMPVersion contains the version number and the capabailities of a QEMU
// instance, as reported in the QMP greeting message.
type QMPVersion struct {
Major int
Minor int
Micro int
Capabilities []string
}
// CPUProperties contains the properties to be used for hotplugging a CPU instance
type CPUProperties struct {
Node int `json:"node-id"`
Socket int `json:"socket-id"`
Core int `json:"core-id"`
Thread int `json:"thread-id"`
}
// HotpluggableCPU represents a hotpluggable CPU
type HotpluggableCPU struct {
Type string `json:"type"`
VcpusCount int `json:"vcpus-count"`
Properties CPUProperties `json:"props"`
QOMPath string `json:"qom-path"`
}
func (q *QMP) readLoop(fromVMCh chan<- []byte) {
scanner := bufio.NewScanner(q.conn)
for scanner.Scan() {
line := scanner.Bytes()
if q.cfg.Logger.V(1) {
q.cfg.Logger.Infof("%s", string(line))
}
fromVMCh <- line
}
close(fromVMCh)
}
func (q *QMP) processQMPEvent(cmdQueue *list.List, name interface{}, data interface{},
timestamp interface{}) {
strname, ok := name.(string)
if !ok {
return
}
var eventData map[string]interface{}
if data != nil {
eventData, _ = data.(map[string]interface{})
}
cmdEl := cmdQueue.Front()
if cmdEl != nil {
cmd := cmdEl.Value.(*qmpCommand)
filter := cmd.filter
if filter != nil {
if filter.eventName == strname {
match := filter.dataKey == ""
if !match && eventData != nil {
match = eventData[filter.dataKey] == filter.dataValue
}
if match {
if cmd.resultReceived {
q.finaliseCommand(cmdEl, cmdQueue, true)
} else {
cmd.filter = nil
}
}
}
}
}
if q.cfg.EventCh != nil {
ev := QMPEvent{
Name: strname,
Data: eventData,
}
if timestamp != nil {
timestamp, ok := timestamp.(map[string]interface{})
if ok {
seconds, _ := timestamp["seconds"].(float64)
microseconds, _ := timestamp["microseconds"].(float64)
ev.Timestamp = time.Unix(int64(seconds), int64(microseconds))
}
}
q.cfg.EventCh <- ev
}
}
func (q *QMP) finaliseCommandWithResponse(cmdEl *list.Element, cmdQueue *list.List, succeeded bool, response interface{}) {
cmd := cmdEl.Value.(*qmpCommand)
cmdQueue.Remove(cmdEl)
select {
case <-cmd.ctx.Done():
default:
if succeeded {
cmd.res <- qmpResult{response: response}
} else {
cmd.res <- qmpResult{err: fmt.Errorf("QMP command failed")}
}
}
if cmdQueue.Len() > 0 {
q.writeNextQMPCommand(cmdQueue)
}
}
func (q *QMP) finaliseCommand(cmdEl *list.Element, cmdQueue *list.List, succeeded bool) {
q.finaliseCommandWithResponse(cmdEl, cmdQueue, succeeded, nil)
}
func (q *QMP) processQMPInput(line []byte, cmdQueue *list.List) {
var vmData map[string]interface{}
err := json.Unmarshal(line, &vmData)
if err != nil {
q.cfg.Logger.Warningf("Unable to decode response [%s] from VM: %v",
string(line), err)
return
}
if evname, found := vmData["event"]; found {
q.processQMPEvent(cmdQueue, evname, vmData["data"], vmData["timestamp"])
return
}
response, succeeded := vmData["return"]
_, failed := vmData["error"]
if !succeeded && !failed {
return
}
cmdEl := cmdQueue.Front()
if cmdEl == nil {
q.cfg.Logger.Warningf("Unexpected command response received [%s] from VM",
string(line))
return
}
cmd := cmdEl.Value.(*qmpCommand)
if failed || cmd.filter == nil {
q.finaliseCommandWithResponse(cmdEl, cmdQueue, succeeded, response)
} else {
cmd.resultReceived = true
}
}
func currentCommandDoneCh(cmdQueue *list.List) <-chan struct{} {
cmdEl := cmdQueue.Front()
if cmdEl == nil {
return nil
}
cmd := cmdEl.Value.(*qmpCommand)
return cmd.ctx.Done()
}
func (q *QMP) writeNextQMPCommand(cmdQueue *list.List) {
cmdEl := cmdQueue.Front()
cmd := cmdEl.Value.(*qmpCommand)
cmdData := make(map[string]interface{})
cmdData["execute"] = cmd.name
if cmd.args != nil {
cmdData["arguments"] = cmd.args
}
encodedCmd, err := json.Marshal(&cmdData)
if err != nil {
cmd.res <- qmpResult{
err: fmt.Errorf("Unable to marhsall command %s: %v",
cmd.name, err),
}
cmdQueue.Remove(cmdEl)
}
q.cfg.Logger.Infof("%s", string(encodedCmd))
encodedCmd = append(encodedCmd, '\n')
_, err = q.conn.Write(encodedCmd)
if err != nil {
cmd.res <- qmpResult{
err: fmt.Errorf("Unable to write command to qmp socket %v", err),
}
cmdQueue.Remove(cmdEl)
}
}
func failOutstandingCommands(cmdQueue *list.List) {
for e := cmdQueue.Front(); e != nil; e = e.Next() {
cmd := e.Value.(*qmpCommand)
select {
case cmd.res <- qmpResult{
err: errors.New("exitting QMP loop, command cancelled"),
}:
case <-cmd.ctx.Done():
}
}
}
func (q *QMP) cancelCurrentCommand(cmdQueue *list.List) {
cmdEl := cmdQueue.Front()
cmd := cmdEl.Value.(*qmpCommand)
if cmd.resultReceived {
q.finaliseCommand(cmdEl, cmdQueue, false)
} else {
cmd.filter = nil
}
}
func (q *QMP) parseVersion(version []byte) *QMPVersion {
var qmp map[string]interface{}
err := json.Unmarshal(version, &qmp)
if err != nil {
q.cfg.Logger.Errorf("Invalid QMP greeting: %s", string(version))
return nil
}
versionMap := qmp
for _, k := range []string{"QMP", "version", "qemu"} {
versionMap, _ = versionMap[k].(map[string]interface{})
if versionMap == nil {
q.cfg.Logger.Errorf("Invalid QMP greeting: %s", string(version))
return nil
}
}
micro, _ := versionMap["micro"].(float64)
minor, _ := versionMap["minor"].(float64)
major, _ := versionMap["major"].(float64)
capabilities, _ := qmp["QMP"].(map[string]interface{})["capabilities"].([]interface{})
stringcaps := make([]string, 0, len(capabilities))
for _, c := range capabilities {
if cap, ok := c.(string); ok {
stringcaps = append(stringcaps, cap)
}
}
return &QMPVersion{Major: int(major),
Minor: int(minor),
Micro: int(micro),
Capabilities: stringcaps,
}
}
// The qemu package allows multiple QMP commands to be submitted concurrently
// from different Go routines. Unfortunately, QMP doesn't really support parallel
// commands as there is no way reliable way to associate a command response
// with a request. For this reason we need to submit our commands to
// QMP serially. The qemu package performs this serialisation using a
// queue (cmdQueue owned by mainLoop). We use a queue rather than a simple
// mutex so we can support cancelling of commands (see below) and ordered
// execution of commands, i.e., if command B is issued before command C,
// it should be executed before command C even if both commands are initially
// blocked waiting for command A to finish. This would be hard to achieve with
// a simple mutex.
//
// Cancelling is a little tricky. Commands such as ExecuteQMPCapabilities
// can be cancelled by cancelling or timing out their contexts. When a
// command is cancelled the calling function, e.g., ExecuteQMPCapabilities,
// will return but we may not be able to remove the command's entry from
// the command queue or issue the next command. There are two scenarios
// here.
//
// 1. The command has been processed by QMP, i.e., we have received a
// return or an error, but is still blocking as it is waiting for
// an event. For example, the ExecuteDeviceDel blocks until a DEVICE_DELETED
// event is received. When such a command is cancelled we can remove it
// from the queue and start issuing the next command. When the DEVICE_DELETED
// event eventually arrives it will just be ignored.
//
// 2. The command has not been processed by QMP. In this case the command
// needs to remain on the cmdQueue until the response to this command is
// received from QMP. During this time no new commands can be issued. When the
// response is received, it is discarded (as no one is interested in the result
// any more), the entry is removed from the cmdQueue and we can proceed to
// execute the next command.
func (q *QMP) mainLoop() {
cmdQueue := list.New().Init()
fromVMCh := make(chan []byte)
go q.readLoop(fromVMCh)
defer func() {
if q.cfg.EventCh != nil {
close(q.cfg.EventCh)
}
_ = q.conn.Close()
_ = <-fromVMCh
failOutstandingCommands(cmdQueue)
close(q.disconnectedCh)
}()
version := []byte{}
var cmdDoneCh <-chan struct{}
DONE:
for {
var ok bool
select {
case cmd, ok := <-q.cmdCh:
if !ok {
return
}
_ = cmdQueue.PushBack(&cmd)
case version, ok = <-fromVMCh:
if !ok {
return
}
if cmdQueue.Len() >= 1 {
q.writeNextQMPCommand(cmdQueue)
cmdDoneCh = currentCommandDoneCh(cmdQueue)
}
break DONE
}
}
q.connectedCh <- q.parseVersion(version)
for {
select {
case cmd, ok := <-q.cmdCh:
if !ok {
return
}
_ = cmdQueue.PushBack(&cmd)
// We only want to execute the new cmd if there
// are no other commands pending. If there are
// commands pending our new command will get
// run when the pending commands complete.
if cmdQueue.Len() == 1 {
q.writeNextQMPCommand(cmdQueue)
cmdDoneCh = currentCommandDoneCh(cmdQueue)
}
case line, ok := <-fromVMCh:
if !ok {
return
}
q.processQMPInput(line, cmdQueue)
cmdDoneCh = currentCommandDoneCh(cmdQueue)
case <-cmdDoneCh:
q.cancelCurrentCommand(cmdQueue)
cmdDoneCh = currentCommandDoneCh(cmdQueue)
}
}
}
func startQMPLoop(conn io.ReadWriteCloser, cfg QMPConfig,
connectedCh chan<- *QMPVersion, disconnectedCh chan struct{}) *QMP {
q := &QMP{
cmdCh: make(chan qmpCommand),
conn: conn,
cfg: cfg,
connectedCh: connectedCh,
disconnectedCh: disconnectedCh,
}
go q.mainLoop()
return q
}
func (q *QMP) executeCommandWithResponse(ctx context.Context, name string, args map[string]interface{},
filter *qmpEventFilter) (interface{}, error) {
var err error
var response interface{}
resCh := make(chan qmpResult)
select {
case <-q.disconnectedCh:
err = errors.New("exitting QMP loop, command cancelled")
case q.cmdCh <- qmpCommand{
ctx: ctx,
res: resCh,
name: name,
args: args,
filter: filter,
}:
}
if err != nil {
return response, err
}
select {
case res := <-resCh:
err = res.err
response = res.response
case <-ctx.Done():
err = ctx.Err()
}
return response, err
}
func (q *QMP) executeCommand(ctx context.Context, name string, args map[string]interface{},
filter *qmpEventFilter) error {
_, err := q.executeCommandWithResponse(ctx, name, args, filter)
return err
}
// QMPStart connects to a unix domain socket maintained by a QMP instance. It
// waits to receive the QMP welcome message via the socket and spawns some go
// routines to manage the socket. The function returns a *QMP which can be
// used by callers to send commands to the QEMU instance or to close the
// socket and all the go routines that have been spawned to monitor it. A
// *QMPVersion is also returned. This structure contains the version and
// capabilities information returned by the QEMU instance in its welcome
// message.
//
// socket contains the path to the domain socket. cfg contains some options
// that can be specified by the caller, namely where the qemu package should
// send logs and QMP events. disconnectedCh is a channel that must be supplied
// by the caller. It is closed when an error occurs openning or writing to
// or reading from the unix domain socket. This implies that the QEMU instance
// that opened the socket has closed.
//
// If this function returns without error, callers should call QMP.Shutdown
// when they wish to stop monitoring the QMP instance. This is not strictly
// necessary if the QEMU instance exits and the disconnectedCh is closed, but
// doing so will not cause any problems.
//
// Commands can be sent to the QEMU instance via the QMP.Execute methods.
// These commands are executed serially, even if the QMP.Execute methods
// are called from different go routines. The QMP.Execute methods will
// block until they have received a success or failure message from QMP,
// i.e., {"return": {}} or {"error":{}}, and in some cases certain events
// are received.
func QMPStart(ctx context.Context, socket string, cfg QMPConfig, disconnectedCh chan struct{}) (*QMP, *QMPVersion, error) {
if cfg.Logger == nil {
cfg.Logger = qmpNullLogger{}
}
dialer := net.Dialer{Cancel: ctx.Done()}
conn, err := dialer.Dial("unix", socket)
if err != nil {
cfg.Logger.Warningf("Unable to connect to unix socket (%s): %v", socket, err)
close(disconnectedCh)
return nil, nil, err
}
connectedCh := make(chan *QMPVersion)
q := startQMPLoop(conn, cfg, connectedCh, disconnectedCh)
select {
case <-ctx.Done():
q.Shutdown()
<-disconnectedCh
return nil, nil, fmt.Errorf("Canceled by caller")
case <-disconnectedCh:
return nil, nil, fmt.Errorf("Lost connection to VM")
case q.version = <-connectedCh:
if q.version == nil {
return nil, nil, fmt.Errorf("Failed to find QMP version information")
}
}
return q, q.version, nil
}
// Shutdown closes the domain socket used to monitor a QEMU instance and
// terminates all the go routines spawned by QMPStart to manage that instance.
// QMP.Shutdown does not shut down the running instance. Calling QMP.Shutdown
// will result in the disconnectedCh channel being closed, indicating that we
// have lost connection to the QMP instance. In this case it does not indicate
// that the instance has quit.
//
// QMP.Shutdown should not be called concurrently with other QMP methods. It
// should not be called twice on the same QMP instance.
//
// Calling QMP.Shutdown after the disconnectedCh channel is closed is permitted but
// will not have any effect.
func (q *QMP) Shutdown() {
close(q.cmdCh)
}
// ExecuteQMPCapabilities executes the qmp_capabilities command on the instance.
func (q *QMP) ExecuteQMPCapabilities(ctx context.Context) error {
return q.executeCommand(ctx, "qmp_capabilities", nil, nil)
}
// ExecuteStop sends the stop command to the instance.
func (q *QMP) ExecuteStop(ctx context.Context) error {
return q.executeCommand(ctx, "stop", nil, nil)
}
// ExecuteCont sends the cont command to the instance.
func (q *QMP) ExecuteCont(ctx context.Context) error {
return q.executeCommand(ctx, "cont", nil, nil)
}
// ExecuteSystemPowerdown sends the system_powerdown command to the instance.
// This function will block until the SHUTDOWN event is received.
func (q *QMP) ExecuteSystemPowerdown(ctx context.Context) error {
filter := &qmpEventFilter{
eventName: "SHUTDOWN",
}
return q.executeCommand(ctx, "system_powerdown", nil, filter)
}
// ExecuteQuit sends the quit command to the instance, terminating
// the QMP instance immediately.
func (q *QMP) ExecuteQuit(ctx context.Context) error {
return q.executeCommand(ctx, "quit", nil, nil)
}
// ExecuteBlockdevAdd sends a blockdev-add to the QEMU instance. device is the
// path of the device to add, e.g., /dev/rdb0, and blockdevID is an identifier
// used to name the device. As this identifier will be passed directly to QMP,
// it must obey QMP's naming rules, e,g., it must start with a letter.
func (q *QMP) ExecuteBlockdevAdd(ctx context.Context, device, blockdevID string) error {
var args map[string]interface{}
blockdevArgs := map[string]interface{}{
"driver": "raw",
"file": map[string]interface{}{
"driver": "file",
"filename": device,
},
}
if q.version.Major > 2 || (q.version.Major == 2 && q.version.Minor >= 9) {
blockdevArgs["node-name"] = blockdevID
args = blockdevArgs
} else {
blockdevArgs["id"] = blockdevID
args = map[string]interface{}{
"options": blockdevArgs,
}
}
return q.executeCommand(ctx, "blockdev-add", args, nil)
}
// ExecuteDeviceAdd adds the guest portion of a device to a QEMU instance
// using the device_add command. blockdevID should match the blockdevID passed
// to a previous call to ExecuteBlockdevAdd. devID is the id of the device to
// add. Both strings must be valid QMP identifiers. driver is the name of the
// driver,e.g., virtio-blk-pci, and bus is the name of the bus. bus is optional.
func (q *QMP) ExecuteDeviceAdd(ctx context.Context, blockdevID, devID, driver, bus string) error {
args := map[string]interface{}{
"id": devID,
"driver": driver,
"drive": blockdevID,
}
if bus != "" {
args["bus"] = bus
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecuteSCSIDeviceAdd adds the guest portion of a block device to a QEMU instance
// using a SCSI driver with the device_add command. blockdevID should match the
// blockdevID passed to a previous call to ExecuteBlockdevAdd. devID is the id of
// the device to add. Both strings must be valid QMP identifiers. driver is the name of the
// scsi driver,e.g., scsi-hd, and bus is the name of a SCSI controller bus.
// scsiID is the SCSI id, lun is logical unit number. scsiID and lun are optional, a negative value
// for scsiID and lun is ignored.
func (q *QMP) ExecuteSCSIDeviceAdd(ctx context.Context, blockdevID, devID, driver, bus string, scsiID, lun int) error {
// TBD: Add drivers for scsi passthrough like scsi-generic and scsi-block
drivers := []string{"scsi-hd", "scsi-cd", "scsi-disk"}
isSCSIDriver := false
for _, d := range drivers {
if driver == d {
isSCSIDriver = true
break
}
}
if !isSCSIDriver {
return fmt.Errorf("Invalid SCSI driver provided %s", driver)
}
args := map[string]interface{}{
"id": devID,
"driver": driver,
"drive": blockdevID,
"bus": bus,
}
if scsiID >= 0 {
args["scsi-id"] = scsiID
}
if lun >= 0 {
args["lun"] = lun
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecuteBlockdevDel deletes a block device by sending a x-blockdev-del command
// for qemu versions < 2.9. It sends the updated blockdev-del command for qemu>=2.9.
// blockdevID is the id of the block device to be deleted. Typically, this will
// match the id passed to ExecuteBlockdevAdd. It must be a valid QMP id.
func (q *QMP) ExecuteBlockdevDel(ctx context.Context, blockdevID string) error {
args := map[string]interface{}{}
if q.version.Major > 2 || (q.version.Major == 2 && q.version.Minor >= 9) {
args["node-name"] = blockdevID
return q.executeCommand(ctx, "blockdev-del", args, nil)
}
args["id"] = blockdevID
return q.executeCommand(ctx, "x-blockdev-del", args, nil)
}
// ExecuteDeviceDel deletes guest portion of a QEMU device by sending a
// device_del command. devId is the identifier of the device to delete.
// Typically it would match the devID parameter passed to an earlier call
// to ExecuteDeviceAdd. It must be a valid QMP identidier.
//
// This method blocks until a DEVICE_DELETED event is received for devID.
func (q *QMP) ExecuteDeviceDel(ctx context.Context, devID string) error {
args := map[string]interface{}{
"id": devID,
}
filter := &qmpEventFilter{
eventName: "DEVICE_DELETED",
dataKey: "device",
dataValue: devID,
}
return q.executeCommand(ctx, "device_del", args, filter)
}
// ExecutePCIDeviceAdd is the PCI version of ExecuteDeviceAdd. This function can be used
// to hot plug PCI devices on PCI(E) bridges, unlike ExecuteDeviceAdd this function receive the
// device address on its parent bus. bus is optional.
func (q *QMP) ExecutePCIDeviceAdd(ctx context.Context, blockdevID, devID, driver, addr, bus string) error {
args := map[string]interface{}{
"id": devID,
"driver": driver,
"drive": blockdevID,
"addr": addr,
}
if bus != "" {
args["bus"] = bus
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecuteVFIODeviceAdd adds a VFIO device to a QEMU instance
// using the device_add command. devID is the id of the device to add.
// Must be valid QMP identifier. bdf is the PCI bus-device-function
// of the pci device.
func (q *QMP) ExecuteVFIODeviceAdd(ctx context.Context, devID, bdf string) error {
args := map[string]interface{}{
"id": devID,
"driver": "vfio-pci",
"host": bdf,
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecutePCIVFIODeviceAdd adds a VFIO device to a QEMU instance using the device_add command.
// This function can be used to hot plug VFIO devices on PCI(E) bridges, unlike
// ExecuteVFIODeviceAdd this function receives the bus and the device address on its parent bus.
// bus is optional. devID is the id of the device to add.Must be valid QMP identifier. bdf is the
// PCI bus-device-function of the pci device.
func (q *QMP) ExecutePCIVFIODeviceAdd(ctx context.Context, devID, bdf, addr, bus string) error {
args := map[string]interface{}{
"id": devID,
"driver": "vfio-pci",
"host": bdf,
"addr": addr,
}
if bus != "" {
args["bus"] = bus
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecuteCPUDeviceAdd adds a CPU to a QEMU instance using the device_add command.
// driver is the CPU model, cpuID must be a unique ID to identify the CPU, socketID is the socket number within
// node/board the CPU belongs to, coreID is the core number within socket the CPU belongs to, threadID is the
// thread number within core the CPU belongs to.
func (q *QMP) ExecuteCPUDeviceAdd(ctx context.Context, driver, cpuID, socketID, coreID, threadID string) error {
args := map[string]interface{}{
"driver": driver,
"id": cpuID,
"socket-id": socketID,
"core-id": coreID,
"thread-id": threadID,
}
return q.executeCommand(ctx, "device_add", args, nil)
}
// ExecuteQueryHotpluggableCPUs returns a slice with the list of hotpluggable CPUs
func (q *QMP) ExecuteQueryHotpluggableCPUs(ctx context.Context) ([]HotpluggableCPU, error) {
response, err := q.executeCommandWithResponse(ctx, "query-hotpluggable-cpus", nil, nil)
if err != nil {
return nil, err
}
// convert response to json
data, err := json.Marshal(response)
if err != nil {
return nil, fmt.Errorf("Unable to extract CPU information: %v", err)
}
var cpus []HotpluggableCPU
// convert json to []HotpluggableCPU
if err = json.Unmarshal(data, &cpus); err != nil {
return nil, fmt.Errorf("Unable to convert json to hotpluggable CPU: %v", err)
}
return cpus, nil
}