bump(github.com/appc/spec): fc380db5fc13c6dd71a5b0bf2af0d182865d1b1d

This commit is contained in:
Dr. Stefan Schimanski 2017-01-29 12:33:19 +01:00 committed by Dr. Stefan Schimanski
parent bc6fdd925d
commit 011d35a422
20 changed files with 2416 additions and 42 deletions

17
Godeps/Godeps.json generated
View File

@ -115,18 +115,23 @@
},
{
"ImportPath": "github.com/appc/spec/schema",
"Comment": "v0.8.1-6-gab50d12",
"Rev": "ab50d12e88f57788bf84b83fef2be236eb1fcc0b"
"Comment": "v0.8.9-17-gfc380db",
"Rev": "fc380db5fc13c6dd71a5b0bf2af0d182865d1b1d"
},
{
"ImportPath": "github.com/appc/spec/schema/common",
"Comment": "v0.8.1-6-gab50d12",
"Rev": "ab50d12e88f57788bf84b83fef2be236eb1fcc0b"
"Comment": "v0.8.9-17-gfc380db",
"Rev": "fc380db5fc13c6dd71a5b0bf2af0d182865d1b1d"
},
{
"ImportPath": "github.com/appc/spec/schema/types",
"Comment": "v0.8.1-6-gab50d12",
"Rev": "ab50d12e88f57788bf84b83fef2be236eb1fcc0b"
"Comment": "v0.8.9-17-gfc380db",
"Rev": "fc380db5fc13c6dd71a5b0bf2af0d182865d1b1d"
},
{
"ImportPath": "github.com/appc/spec/schema/types/resource",
"Comment": "v0.8.9-17-gfc380db",
"Rev": "fc380db5fc13c6dd71a5b0bf2af0d182865d1b1d"
},
{
"ImportPath": "github.com/armon/circbuf",

View File

@ -28,13 +28,15 @@ import (
const PodManifestKind = types.ACKind("PodManifest")
type PodManifest struct {
ACVersion types.SemVer `json:"acVersion"`
ACKind types.ACKind `json:"acKind"`
Apps AppList `json:"apps"`
Volumes []types.Volume `json:"volumes"`
Isolators []types.Isolator `json:"isolators"`
Annotations types.Annotations `json:"annotations"`
Ports []types.ExposedPort `json:"ports"`
ACVersion types.SemVer `json:"acVersion"`
ACKind types.ACKind `json:"acKind"`
Apps AppList `json:"apps"`
Volumes []types.Volume `json:"volumes"`
Isolators []types.Isolator `json:"isolators"`
Annotations types.Annotations `json:"annotations"`
Ports []types.ExposedPort `json:"ports"`
UserAnnotations types.UserAnnotations `json:"userAnnotations,omitempty"`
UserLabels types.UserLabels `json:"userLabels,omitempty"`
}
// podManifest is a model to facilitate extra validation during the
@ -135,9 +137,12 @@ func (al AppList) Get(name types.ACName) *RuntimeApp {
// Mount describes the mapping between a volume and the path it is mounted
// inside of an app's filesystem.
// The AppVolume is optional. If missing, the pod-level Volume of the
// same name shall be used.
type Mount struct {
Volume types.ACName `json:"volume"`
Path string `json:"path"`
Volume types.ACName `json:"volume"`
Path string `json:"path"`
AppVolume *types.Volume `json:"appVolume,omitempty"`
}
func (r Mount) assertValid() error {

View File

@ -22,16 +22,18 @@ import (
)
type App struct {
Exec Exec `json:"exec"`
EventHandlers []EventHandler `json:"eventHandlers,omitempty"`
User string `json:"user"`
Group string `json:"group"`
SupplementaryGIDs []int `json:"supplementaryGIDs,omitempty"`
WorkingDirectory string `json:"workingDirectory,omitempty"`
Environment Environment `json:"environment,omitempty"`
MountPoints []MountPoint `json:"mountPoints,omitempty"`
Ports []Port `json:"ports,omitempty"`
Isolators Isolators `json:"isolators,omitempty"`
Exec Exec `json:"exec"`
EventHandlers []EventHandler `json:"eventHandlers,omitempty"`
User string `json:"user"`
Group string `json:"group"`
SupplementaryGIDs []int `json:"supplementaryGIDs,omitempty"`
WorkingDirectory string `json:"workingDirectory,omitempty"`
Environment Environment `json:"environment,omitempty"`
MountPoints []MountPoint `json:"mountPoints,omitempty"`
Ports []Port `json:"ports,omitempty"`
Isolators Isolators `json:"isolators,omitempty"`
UserAnnotations UserAnnotations `json:"userAnnotations,omitempty"`
UserLabels UserLabels `json:"userLabels,omitempty"`
}
// app is a model to facilitate extra validation during the
@ -86,5 +88,8 @@ func (a *App) assertValid() error {
if err := a.Environment.assertValid(); err != nil {
return err
}
if err := a.Isolators.assertValid(); err != nil {
return err
}
return nil
}

View File

@ -16,10 +16,19 @@ package types
import (
"encoding/json"
"errors"
"fmt"
)
var (
isolatorMap map[ACIdentifier]IsolatorValueConstructor
// ErrIncompatibleIsolator is returned whenever an Isolators set contains
// conflicting IsolatorValue instances
ErrIncompatibleIsolator = errors.New("isolators set contains incompatible types")
// ErrInvalidIsolator is returned upon validation failures due to improper
// or partially constructed Isolator instances (eg. from incomplete direct construction)
ErrInvalidIsolator = errors.New("invalid isolator")
)
func init() {
@ -40,6 +49,33 @@ func AddIsolatorName(n ACIdentifier, ns map[ACIdentifier]struct{}) {
// and PodManifest schemas.
type Isolators []Isolator
// assertValid checks that every single isolator is valid and that
// the whole set is well built
func (isolators Isolators) assertValid() error {
typesMap := make(map[ACIdentifier]bool)
for _, i := range isolators {
v := i.Value()
if v == nil {
return ErrInvalidIsolator
}
if err := v.AssertValid(); err != nil {
return err
}
if _, ok := typesMap[i.Name]; ok {
if !v.multipleAllowed() {
return fmt.Errorf(`isolators set contains too many instances of type %s"`, i.Name)
}
}
for _, c := range v.Conflicts() {
if _, found := typesMap[c]; found {
return ErrIncompatibleIsolator
}
}
typesMap[i.Name] = true
}
return nil
}
// GetByName returns the last isolator in the list by the given name.
func (is *Isolators) GetByName(name ACIdentifier) *Isolator {
var i Isolator
@ -52,6 +88,22 @@ func (is *Isolators) GetByName(name ACIdentifier) *Isolator {
return nil
}
// ReplaceIsolatorsByName overrides matching isolator types with a new
// isolator, deleting them all and appending the new one instead
func (is *Isolators) ReplaceIsolatorsByName(newIs Isolator, oldNames []ACIdentifier) {
var i Isolator
for j := len(*is) - 1; j >= 0; j-- {
i = []Isolator(*is)[j]
for _, name := range oldNames {
if i.Name == name {
*is = append((*is)[:j], (*is)[j+1:]...)
}
}
}
*is = append((*is)[:], newIs)
return
}
// Unrecognized returns a set of isolators that are not recognized.
// An isolator is not recognized if it has not had an associated
// constructor registered with AddIsolatorValueConstructor.
@ -69,8 +121,17 @@ func (is *Isolators) Unrecognized() Isolators {
// serialized as any arbitrary JSON blob. Specific Isolator types should
// implement this interface to facilitate unmarshalling and validation.
type IsolatorValue interface {
// UnmarshalJSON unserialize a JSON-encoded isolator
UnmarshalJSON(b []byte) error
// AssertValid returns a non-nil error value if an IsolatorValue is not valid
// according to appc spec
AssertValid() error
// Conflicts returns a list of conflicting isolators types, which cannot co-exist
// together with this IsolatorValue
Conflicts() []ACIdentifier
// multipleAllowed specifies whether multiple isolator instances are allowed
// for this isolator type
multipleAllowed() bool
}
// Isolator is a model for unmarshalling isolator types from their JSON-encoded

View File

@ -17,11 +17,20 @@ package types
import (
"encoding/json"
"errors"
"fmt"
"strings"
"unicode"
)
const (
LinuxCapabilitiesRetainSetName = "os/linux/capabilities-retain-set"
LinuxCapabilitiesRevokeSetName = "os/linux/capabilities-remove-set"
LinuxNoNewPrivilegesName = "os/linux/no-new-privileges"
LinuxSeccompRemoveSetName = "os/linux/seccomp-remove-set"
LinuxSeccompRetainSetName = "os/linux/seccomp-retain-set"
LinuxOOMScoreAdjName = "os/linux/oom-score-adj"
LinuxCPUSharesName = "os/linux/cpu-shares"
LinuxSELinuxContextName = "os/linux/selinux-context"
)
var LinuxIsolatorNames = make(map[ACIdentifier]struct{})
@ -30,12 +39,49 @@ func init() {
for name, con := range map[ACIdentifier]IsolatorValueConstructor{
LinuxCapabilitiesRevokeSetName: func() IsolatorValue { return &LinuxCapabilitiesRevokeSet{} },
LinuxCapabilitiesRetainSetName: func() IsolatorValue { return &LinuxCapabilitiesRetainSet{} },
LinuxNoNewPrivilegesName: func() IsolatorValue { v := LinuxNoNewPrivileges(false); return &v },
LinuxOOMScoreAdjName: func() IsolatorValue { v := LinuxOOMScoreAdj(0); return &v },
LinuxCPUSharesName: func() IsolatorValue { v := LinuxCPUShares(1024); return &v },
LinuxSeccompRemoveSetName: func() IsolatorValue { return &LinuxSeccompRemoveSet{} },
LinuxSeccompRetainSetName: func() IsolatorValue { return &LinuxSeccompRetainSet{} },
LinuxSELinuxContextName: func() IsolatorValue { return &LinuxSELinuxContext{} },
} {
AddIsolatorName(name, LinuxIsolatorNames)
AddIsolatorValueConstructor(name, con)
}
}
type LinuxNoNewPrivileges bool
func (l LinuxNoNewPrivileges) AssertValid() error {
return nil
}
// TODO(lucab): both need to be clarified in spec,
// see https://github.com/appc/spec/issues/625
func (l LinuxNoNewPrivileges) multipleAllowed() bool {
return true
}
func (l LinuxNoNewPrivileges) Conflicts() []ACIdentifier {
return nil
}
func (l *LinuxNoNewPrivileges) UnmarshalJSON(b []byte) error {
var v bool
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
*l = LinuxNoNewPrivileges(v)
return nil
}
type AsIsolator interface {
AsIsolator() (*Isolator, error)
}
type LinuxCapabilitiesSet interface {
Set() []LinuxCapability
AssertValid() error
@ -58,6 +104,15 @@ func (l linuxCapabilitiesSetBase) AssertValid() error {
return nil
}
// TODO(lucab): both need to be clarified in spec,
// see https://github.com/appc/spec/issues/625
func (l linuxCapabilitiesSetBase) multipleAllowed() bool {
return true
}
func (l linuxCapabilitiesSetBase) Conflicts() []ACIdentifier {
return nil
}
func (l *linuxCapabilitiesSetBase) UnmarshalJSON(b []byte) error {
var v linuxCapabilitiesSetValue
err := json.Unmarshal(b, &v)
@ -95,17 +150,17 @@ func NewLinuxCapabilitiesRetainSet(caps ...string) (*LinuxCapabilitiesRetainSet,
return &l, nil
}
func (l LinuxCapabilitiesRetainSet) AsIsolator() Isolator {
func (l LinuxCapabilitiesRetainSet) AsIsolator() (*Isolator, error) {
b, err := json.Marshal(l.linuxCapabilitiesSetBase.val)
if err != nil {
panic(err)
return nil, err
}
rm := json.RawMessage(b)
return Isolator{
return &Isolator{
Name: LinuxCapabilitiesRetainSetName,
ValueRaw: &rm,
value: &l,
}
}, nil
}
type LinuxCapabilitiesRevokeSet struct {
@ -129,15 +184,346 @@ func NewLinuxCapabilitiesRevokeSet(caps ...string) (*LinuxCapabilitiesRevokeSet,
return &l, nil
}
func (l LinuxCapabilitiesRevokeSet) AsIsolator() Isolator {
func (l LinuxCapabilitiesRevokeSet) AsIsolator() (*Isolator, error) {
b, err := json.Marshal(l.linuxCapabilitiesSetBase.val)
if err != nil {
return nil, err
}
rm := json.RawMessage(b)
return &Isolator{
Name: LinuxCapabilitiesRevokeSetName,
ValueRaw: &rm,
value: &l,
}, nil
}
type LinuxSeccompSet interface {
Set() []LinuxSeccompEntry
Errno() LinuxSeccompErrno
AssertValid() error
}
type LinuxSeccompEntry string
type LinuxSeccompErrno string
type linuxSeccompValue struct {
Set []LinuxSeccompEntry `json:"set"`
Errno LinuxSeccompErrno `json:"errno"`
}
type linuxSeccompBase struct {
val linuxSeccompValue
}
func (l linuxSeccompBase) multipleAllowed() bool {
return false
}
func (l linuxSeccompBase) AssertValid() error {
if len(l.val.Set) == 0 {
return errors.New("set must be non-empty")
}
if l.val.Errno == "" {
return nil
}
for _, c := range l.val.Errno {
if !unicode.IsUpper(c) {
return errors.New("errno must be an upper case string")
}
}
return nil
}
func (l *linuxSeccompBase) UnmarshalJSON(b []byte) error {
var v linuxSeccompValue
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
l.val = v
return nil
}
func (l linuxSeccompBase) Set() []LinuxSeccompEntry {
return l.val.Set
}
func (l linuxSeccompBase) Errno() LinuxSeccompErrno {
return l.val.Errno
}
type LinuxSeccompRetainSet struct {
linuxSeccompBase
}
func (l LinuxSeccompRetainSet) Conflicts() []ACIdentifier {
return []ACIdentifier{LinuxSeccompRemoveSetName}
}
func NewLinuxSeccompRetainSet(errno string, syscall ...string) (*LinuxSeccompRetainSet, error) {
l := LinuxSeccompRetainSet{
linuxSeccompBase{
linuxSeccompValue{
make([]LinuxSeccompEntry, len(syscall)),
LinuxSeccompErrno(errno),
},
},
}
for i, c := range syscall {
l.linuxSeccompBase.val.Set[i] = LinuxSeccompEntry(c)
}
if err := l.AssertValid(); err != nil {
return nil, err
}
return &l, nil
}
func (l LinuxSeccompRetainSet) AsIsolator() (*Isolator, error) {
b, err := json.Marshal(l.linuxSeccompBase.val)
if err != nil {
return nil, err
}
rm := json.RawMessage(b)
return &Isolator{
Name: LinuxSeccompRetainSetName,
ValueRaw: &rm,
value: &l,
}, nil
}
type LinuxSeccompRemoveSet struct {
linuxSeccompBase
}
func (l LinuxSeccompRemoveSet) Conflicts() []ACIdentifier {
return []ACIdentifier{LinuxSeccompRetainSetName}
}
func NewLinuxSeccompRemoveSet(errno string, syscall ...string) (*LinuxSeccompRemoveSet, error) {
l := LinuxSeccompRemoveSet{
linuxSeccompBase{
linuxSeccompValue{
make([]LinuxSeccompEntry, len(syscall)),
LinuxSeccompErrno(errno),
},
},
}
for i, c := range syscall {
l.linuxSeccompBase.val.Set[i] = LinuxSeccompEntry(c)
}
if err := l.AssertValid(); err != nil {
return nil, err
}
return &l, nil
}
func (l LinuxSeccompRemoveSet) AsIsolator() (*Isolator, error) {
b, err := json.Marshal(l.linuxSeccompBase.val)
if err != nil {
return nil, err
}
rm := json.RawMessage(b)
return &Isolator{
Name: LinuxSeccompRemoveSetName,
ValueRaw: &rm,
value: &l,
}, nil
}
// LinuxCPUShares assigns the CPU time share weight to the processes executed.
// See https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html#CPUShares=weight,
// https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
type LinuxCPUShares int
func NewLinuxCPUShares(val int) (*LinuxCPUShares, error) {
l := LinuxCPUShares(val)
if err := l.AssertValid(); err != nil {
return nil, err
}
return &l, nil
}
func (l LinuxCPUShares) AssertValid() error {
if l < 2 || l > 262144 {
return fmt.Errorf("%s must be between 2 and 262144, got %d", LinuxCPUSharesName, l)
}
return nil
}
func (l LinuxCPUShares) multipleAllowed() bool {
return false
}
func (l LinuxCPUShares) Conflicts() []ACIdentifier {
return nil
}
func (l *LinuxCPUShares) UnmarshalJSON(b []byte) error {
var v int
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
*l = LinuxCPUShares(v)
return nil
}
func (l LinuxCPUShares) AsIsolator() Isolator {
b, err := json.Marshal(l)
if err != nil {
panic(err)
}
rm := json.RawMessage(b)
return Isolator{
Name: LinuxCapabilitiesRevokeSetName,
Name: LinuxCPUSharesName,
ValueRaw: &rm,
value: &l,
}
}
// LinuxOOMScoreAdj is equivalent to /proc/[pid]/oom_score_adj
type LinuxOOMScoreAdj int // -1000 to 1000
func NewLinuxOOMScoreAdj(val int) (*LinuxOOMScoreAdj, error) {
l := LinuxOOMScoreAdj(val)
if err := l.AssertValid(); err != nil {
return nil, err
}
return &l, nil
}
func (l LinuxOOMScoreAdj) AssertValid() error {
if l < -1000 || l > 1000 {
return fmt.Errorf("%s must be between -1000 and 1000, got %d", LinuxOOMScoreAdjName, l)
}
return nil
}
func (l LinuxOOMScoreAdj) multipleAllowed() bool {
return false
}
func (l LinuxOOMScoreAdj) Conflicts() []ACIdentifier {
return nil
}
func (l *LinuxOOMScoreAdj) UnmarshalJSON(b []byte) error {
var v int
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
*l = LinuxOOMScoreAdj(v)
return nil
}
func (l LinuxOOMScoreAdj) AsIsolator() Isolator {
b, err := json.Marshal(l)
if err != nil {
panic(err)
}
rm := json.RawMessage(b)
return Isolator{
Name: LinuxOOMScoreAdjName,
ValueRaw: &rm,
value: &l,
}
}
type LinuxSELinuxUser string
type LinuxSELinuxRole string
type LinuxSELinuxType string
type LinuxSELinuxLevel string
type linuxSELinuxValue struct {
User LinuxSELinuxUser `json:"user"`
Role LinuxSELinuxRole `json:"role"`
Type LinuxSELinuxType `json:"type"`
Level LinuxSELinuxLevel `json:"level"`
}
type LinuxSELinuxContext struct {
val linuxSELinuxValue
}
func (l LinuxSELinuxContext) AssertValid() error {
if l.val.User == "" || strings.Contains(string(l.val.User), ":") {
return fmt.Errorf("invalid user value %q", l.val.User)
}
if l.val.Role == "" || strings.Contains(string(l.val.Role), ":") {
return fmt.Errorf("invalid role value %q", l.val.Role)
}
if l.val.Type == "" || strings.Contains(string(l.val.Type), ":") {
return fmt.Errorf("invalid type value %q", l.val.Type)
}
if l.val.Level == "" {
return fmt.Errorf("invalid level value %q", l.val.Level)
}
return nil
}
func (l *LinuxSELinuxContext) UnmarshalJSON(b []byte) error {
var v linuxSELinuxValue
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
l.val = v
return nil
}
func (l LinuxSELinuxContext) User() LinuxSELinuxUser {
return l.val.User
}
func (l LinuxSELinuxContext) Role() LinuxSELinuxRole {
return l.val.Role
}
func (l LinuxSELinuxContext) Type() LinuxSELinuxType {
return l.val.Type
}
func (l LinuxSELinuxContext) Level() LinuxSELinuxLevel {
return l.val.Level
}
func (l LinuxSELinuxContext) multipleAllowed() bool {
return false
}
func (l LinuxSELinuxContext) Conflicts() []ACIdentifier {
return nil
}
func NewLinuxSELinuxContext(selinuxUser, selinuxRole, selinuxType, selinuxLevel string) (*LinuxSELinuxContext, error) {
l := LinuxSELinuxContext{
linuxSELinuxValue{
LinuxSELinuxUser(selinuxUser),
LinuxSELinuxRole(selinuxRole),
LinuxSELinuxType(selinuxType),
LinuxSELinuxLevel(selinuxLevel),
},
}
if err := l.AssertValid(); err != nil {
return nil, err
}
return &l, nil
}
func (l LinuxSELinuxContext) AsIsolator() (*Isolator, error) {
b, err := json.Marshal(l.val)
if err != nil {
return nil, err
}
rm := json.RawMessage(b)
return &Isolator{
Name: LinuxSELinuxContextName,
ValueRaw: &rm,
value: &l,
}, nil
}

View File

@ -19,7 +19,7 @@ import (
"errors"
"fmt"
"k8s.io/apimachinery/pkg/api/resource"
"github.com/appc/spec/schema/types/resource"
)
var (
@ -85,6 +85,15 @@ func (r ResourceBase) AssertValid() error {
return nil
}
// TODO(lucab): both need to be clarified in spec,
// see https://github.com/appc/spec/issues/625
func (l ResourceBase) multipleAllowed() bool {
return true
}
func (l ResourceBase) Conflicts() []ACIdentifier {
return nil
}
type ResourceBlockBandwidth struct {
ResourceBase
}

View File

@ -0,0 +1,83 @@
// Copyright 2016 The appc Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package types
import (
"encoding/json"
)
var (
UnixIsolatorNames = make(map[ACIdentifier]struct{})
)
const (
//TODO(lucab): add "ulimit" isolators
UnixSysctlName = "os/unix/sysctl"
)
func init() {
for name, con := range map[ACIdentifier]IsolatorValueConstructor{
UnixSysctlName: func() IsolatorValue { return &UnixSysctl{} },
} {
AddIsolatorName(name, UnixIsolatorNames)
AddIsolatorValueConstructor(name, con)
}
}
type UnixSysctl map[string]string
func (s *UnixSysctl) UnmarshalJSON(b []byte) error {
var v map[string]string
err := json.Unmarshal(b, &v)
if err != nil {
return err
}
*s = UnixSysctl(v)
return err
}
func (s UnixSysctl) AssertValid() error {
return nil
}
func (s UnixSysctl) multipleAllowed() bool {
return false
}
func (s UnixSysctl) Conflicts() []ACIdentifier {
return nil
}
func (s UnixSysctl) AsIsolator() Isolator {
isol := isolatorMap[UnixSysctlName]()
b, err := json.Marshal(s)
if err != nil {
panic(err)
}
valRaw := json.RawMessage(b)
return Isolator{
Name: UnixSysctlName,
ValueRaw: &valRaw,
value: isol,
}
}
func NewUnixSysctlIsolator(cfg map[string]string) (*UnixSysctl, error) {
s := UnixSysctl(cfg)
if err := s.AssertValid(); err != nil {
return nil, err
}
return &s, nil
}

View File

@ -21,7 +21,7 @@ import (
)
var ValidOSArch = map[string][]string{
"linux": {"amd64", "i386", "aarch64", "aarch64_be", "armv6l", "armv7l", "armv7b"},
"linux": {"amd64", "i386", "aarch64", "aarch64_be", "armv6l", "armv7l", "armv7b", "ppc64", "ppc64le", "s390x"},
"freebsd": {"amd64", "i386", "arm"},
"darwin": {"x86_64", "i386"},
}
@ -35,6 +35,17 @@ type Label struct {
Value string `json:"value"`
}
// {appc,go}ArchTuple are internal helper types used to translate arch tuple between go and appc
type appcArchTuple struct {
appcOs string
appcArch string
}
type goArchTuple struct {
goOs string
goArch string
goArchFlavor string
}
// IsValidOsArch checks if a OS-architecture combination is valid given a map
// of valid OS-architectures
func IsValidOSArch(labels map[ACIdentifier]string, validOSArch map[string][]string) error {
@ -132,3 +143,64 @@ func LabelsFromMap(labelsMap map[ACIdentifier]string) (Labels, error) {
}
return labels, nil
}
// ToAppcOSArch translates a Golang arch tuple (OS, architecture, flavor) into
// an appc arch tuple (OS, architecture)
func ToAppcOSArch(goOs string, goArch string, goArchFlavor string) (appcOs string, appcArch string, e error) {
tabularAppcToGo := map[goArchTuple]appcArchTuple{
{"linux", "amd64", ""}: {"linux", "amd64"},
{"linux", "386", ""}: {"linux", "i386"},
{"linux", "arm64", ""}: {"linux", "aarch64"},
{"linux", "arm", ""}: {"linux", "armv6l"},
{"linux", "arm", "6"}: {"linux", "armv6l"},
{"linux", "arm", "7"}: {"linux", "armv7l"},
{"linux", "ppc64", ""}: {"linux", "ppc64"},
{"linux", "ppc64le", ""}: {"linux", "ppc64le"},
{"linux", "s390x", ""}: {"linux", "s390x"},
{"freebsd", "amd64", ""}: {"freebsd", "amd64"},
{"freebsd", "386", ""}: {"freebsd", "i386"},
{"freebsd", "arm", ""}: {"freebsd", "arm"},
{"freebsd", "arm", "5"}: {"freebsd", "arm"},
{"freebsd", "arm", "6"}: {"freebsd", "arm"},
{"freebsd", "arm", "7"}: {"freebsd", "arm"},
{"darwin", "amd64", ""}: {"darwin", "x86_64"},
{"darwin", "386", ""}: {"darwin", "i386"},
}
archTuple, ok := tabularAppcToGo[goArchTuple{goOs, goArch, goArchFlavor}]
if !ok {
return "", "", fmt.Errorf("unknown arch tuple: %q - %q - %q", goOs, goArch, goArchFlavor)
}
return archTuple.appcOs, archTuple.appcArch, nil
}
// ToGoOSArch translates an appc arch tuple (OS, architecture) into
// a Golang arch tuple (OS, architecture, flavor)
func ToGoOSArch(appcOs string, appcArch string) (goOs string, goArch string, goArchFlavor string, e error) {
tabularGoToAppc := map[appcArchTuple]goArchTuple{
// {"linux", "aarch64_be"}: nil,
// {"linux", "armv7b"}: nil,
{"linux", "aarch64"}: {"linux", "arm64", ""},
{"linux", "amd64"}: {"linux", "amd64", ""},
{"linux", "armv6l"}: {"linux", "arm", "6"},
{"linux", "armv7l"}: {"linux", "arm", "7"},
{"linux", "i386"}: {"linux", "386", ""},
{"linux", "ppc64"}: {"linux", "ppc64", ""},
{"linux", "ppc64le"}: {"linux", "ppc64le", ""},
{"linux", "s390x"}: {"linux", "s390x", ""},
{"freebsd", "amd64"}: {"freebsd", "amd64", ""},
{"freebsd", "arm"}: {"freebsd", "arm", "6"},
{"freebsd", "386"}: {"freebsd", "i386", ""},
{"darwin", "amd64"}: {"darwin", "x86_64", ""},
{"darwin", "386"}: {"darwin", "i386", ""},
}
archTuple, ok := tabularGoToAppc[appcArchTuple{appcOs, appcArch}]
if !ok {
return "", "", "", fmt.Errorf("unknown arch tuple: %q - %q", appcOs, appcArch)
}
return archTuple.goOs, archTuple.goArch, archTuple.goArchFlavor, nil
}

View File

@ -23,6 +23,7 @@ import (
"github.com/appc/spec/schema/common"
)
// MountPoint is the application-side manifestation of a Volume.
type MountPoint struct {
Name ACName `json:"name"`
Path string `json:"path"`

View File

@ -18,12 +18,15 @@ import (
"encoding/json"
"errors"
"fmt"
"net"
"net/url"
"strconv"
"github.com/appc/spec/schema/common"
)
// Port represents a port as offered by an application *inside*
// the pod.
type Port struct {
Name ACName `json:"name"`
Protocol string `json:"protocol"`
@ -32,9 +35,14 @@ type Port struct {
SocketActivated bool `json:"socketActivated"`
}
// ExposedPort represents a port listening on the host side.
// The PodPort is optional -- if missing, then try and find the pod-side
// information by matching names
type ExposedPort struct {
Name ACName `json:"name"`
HostPort uint `json:"hostPort"`
HostIP net.IP `json:"hostIP,omitempty"` // optional
PodPort *Port `json:"podPort,omitempty"` // optional. If missing, try and find a corresponding App's port
}
type port Port

View File

@ -0,0 +1,4 @@
This package was copied in from the Kubernetes repo to avoid a cyclic
dependency. These files were taken from master from
github.com/kubernetes/kubernetes at commit hash
b0deb2eb8f4037421077f77cb163dbb4c0a2a9f5.

View File

@ -0,0 +1,298 @@
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
"strconv"
inf "gopkg.in/inf.v0"
)
// Scale is used for getting and setting the base-10 scaled value.
// Base-2 scales are omitted for mathematical simplicity.
// See Quantity.ScaledValue for more details.
type Scale int32
// infScale adapts a Scale value to an inf.Scale value.
func (s Scale) infScale() inf.Scale {
return inf.Scale(-s) // inf.Scale is upside-down
}
const (
Nano Scale = -9
Micro Scale = -6
Milli Scale = -3
Kilo Scale = 3
Mega Scale = 6
Giga Scale = 9
Tera Scale = 12
Peta Scale = 15
Exa Scale = 18
)
var (
Zero = int64Amount{}
// Used by quantity strings - treat as read only
zeroBytes = []byte("0")
)
// int64Amount represents a fixed precision numerator and arbitrary scale exponent. It is faster
// than operations on inf.Dec for values that can be represented as int64.
type int64Amount struct {
value int64
scale Scale
}
// Sign returns 0 if the value is zero, -1 if it is less than 0, or 1 if it is greater than 0.
func (a int64Amount) Sign() int {
switch {
case a.value == 0:
return 0
case a.value > 0:
return 1
default:
return -1
}
}
// AsInt64 returns the current amount as an int64 at scale 0, or false if the value cannot be
// represented in an int64 OR would result in a loss of precision. This method is intended as
// an optimization to avoid calling AsDec.
func (a int64Amount) AsInt64() (int64, bool) {
if a.scale == 0 {
return a.value, true
}
if a.scale < 0 {
// TODO: attempt to reduce factors, although it is assumed that factors are reduced prior
// to the int64Amount being created.
return 0, false
}
return positiveScaleInt64(a.value, a.scale)
}
// AsScaledInt64 returns an int64 representing the value of this amount at the specified scale,
// rounding up, or false if that would result in overflow. (1e20).AsScaledInt64(1) would result
// in overflow because 1e19 is not representable as an int64. Note that setting a scale larger
// than the current value may result in loss of precision - i.e. (1e-6).AsScaledInt64(0) would
// return 1, because 0.000001 is rounded up to 1.
func (a int64Amount) AsScaledInt64(scale Scale) (result int64, ok bool) {
if a.scale < scale {
result, _ = negativeScaleInt64(a.value, scale-a.scale)
return result, true
}
return positiveScaleInt64(a.value, a.scale-scale)
}
// AsDec returns an inf.Dec representation of this value.
func (a int64Amount) AsDec() *inf.Dec {
var base inf.Dec
base.SetUnscaled(a.value)
base.SetScale(inf.Scale(-a.scale))
return &base
}
// Cmp returns 0 if a and b are equal, 1 if a is greater than b, or -1 if a is less than b.
func (a int64Amount) Cmp(b int64Amount) int {
switch {
case a.scale == b.scale:
// compare only the unscaled portion
case a.scale > b.scale:
result, remainder, exact := divideByScaleInt64(b.value, a.scale-b.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == a.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return -1
default:
return 1
}
}
b.value = result
default:
result, remainder, exact := divideByScaleInt64(a.value, b.scale-a.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == b.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return 1
default:
return -1
}
}
a.value = result
}
switch {
case a.value == b.value:
return 0
case a.value < b.value:
return -1
default:
return 1
}
}
// Add adds two int64Amounts together, matching scales. It will return false and not mutate
// a if overflow or underflow would result.
func (a *int64Amount) Add(b int64Amount) bool {
switch {
case b.value == 0:
return true
case a.value == 0:
a.value = b.value
a.scale = b.scale
return true
case a.scale == b.scale:
c, ok := int64Add(a.value, b.value)
if !ok {
return false
}
a.value = c
case a.scale > b.scale:
c, ok := positiveScaleInt64(a.value, a.scale-b.scale)
if !ok {
return false
}
c, ok = int64Add(c, b.value)
if !ok {
return false
}
a.scale = b.scale
a.value = c
default:
c, ok := positiveScaleInt64(b.value, b.scale-a.scale)
if !ok {
return false
}
c, ok = int64Add(a.value, c)
if !ok {
return false
}
a.value = c
}
return true
}
// Sub removes the value of b from the current amount, or returns false if underflow would result.
func (a *int64Amount) Sub(b int64Amount) bool {
return a.Add(int64Amount{value: -b.value, scale: b.scale})
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a int64Amount) AsScale(scale Scale) (int64Amount, bool) {
if a.scale >= scale {
return a, true
}
result, exact := negativeScaleInt64(a.value, scale-a.scale)
return int64Amount{value: result, scale: scale}, exact
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a int64Amount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.value
exponent = int32(a.scale)
amount, times := removeInt64Factors(mantissa, 10)
exponent += int32(times)
// make sure exponent is a multiple of 3
var ok bool
switch exponent % 3 {
case 1, -2:
amount, ok = int64MultiplyScale10(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 1
case 2, -1:
amount, ok = int64MultiplyScale100(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 2
}
return strconv.AppendInt(out, amount, 10), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a int64Amount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
value, ok := a.AsScaledInt64(0)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBase1024Bytes(out)
}
amount, exponent := removeInt64Factors(value, 1024)
return strconv.AppendInt(out, amount, 10), exponent
}
// infDecAmount implements common operations over an inf.Dec that are specific to the quantity
// representation.
type infDecAmount struct {
*inf.Dec
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a infDecAmount) AsScale(scale Scale) (infDecAmount, bool) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, scale.infScale(), inf.RoundUp)
return infDecAmount{tmp}, tmp.Cmp(a.Dec) == 0
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a infDecAmount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.Dec.UnscaledBig()
exponent = int32(-a.Dec.Scale())
amount := big.NewInt(0).Set(mantissa)
// move all factors of 10 into the exponent for easy reasoning
amount, times := removeBigIntFactors(amount, bigTen)
exponent += times
// make sure exponent is a multiple of 3
for exponent%3 != 0 {
amount.Mul(amount, bigTen)
exponent--
}
return append(out, amount.String()...), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a infDecAmount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, 0, inf.RoundUp)
amount, exponent := removeBigIntFactors(tmp.UnscaledBig(), big1024)
return append(out, amount.String()...), exponent
}

View File

@ -0,0 +1,327 @@
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
inf "gopkg.in/inf.v0"
)
const (
// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
// It is also the maximum decimal digits that can be represented with an int64.
maxInt64Factors = 18
)
var (
// Commonly needed big.Int values-- treat as read only!
bigTen = big.NewInt(10)
bigZero = big.NewInt(0)
bigOne = big.NewInt(1)
bigThousand = big.NewInt(1000)
big1024 = big.NewInt(1024)
// Commonly needed inf.Dec values-- treat as read only!
decZero = inf.NewDec(0, 0)
decOne = inf.NewDec(1, 0)
decMinusOne = inf.NewDec(-1, 0)
decThousand = inf.NewDec(1000, 0)
dec1024 = inf.NewDec(1024, 0)
decMinus1024 = inf.NewDec(-1024, 0)
// Largest (in magnitude) number allowed.
maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
// The maximum value we can represent milli-units for.
// Compare with the return value of Quantity.Value() to
// see if it's safe to use Quantity.MilliValue().
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
)
const mostNegative = -(mostPositive + 1)
const mostPositive = 1<<63 - 1
// int64Add returns a+b, or false if that would overflow int64.
func int64Add(a, b int64) (int64, bool) {
c := a + b
switch {
case a > 0 && b > 0:
if c < 0 {
return 0, false
}
case a < 0 && b < 0:
if c > 0 {
return 0, false
}
if a == mostNegative && b == mostNegative {
return 0, false
}
}
return c, true
}
// int64Multiply returns a*b, or false if that would overflow or underflow int64.
func int64Multiply(a, b int64) (int64, bool) {
if a == 0 || b == 0 || a == 1 || b == 1 {
return a * b, true
}
if a == mostNegative || b == mostNegative {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
// Use when b is known to be greater than one.
func int64MultiplyScale(a int64, b int64) (int64, bool) {
if a == 0 || a == 1 {
return a * b, true
}
if a == mostNegative && b != 1 {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale10(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 10, true
}
if a == mostNegative {
return 0, false
}
c := a * 10
return c, c/10 == a
}
// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale100(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 100, true
}
if a == mostNegative {
return 0, false
}
c := a * 100
return c, c/100 == a
}
// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale1000(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 1000, true
}
if a == mostNegative {
return 0, false
}
c := a * 1000
return c, c/1000 == a
}
// positiveScaleInt64 multiplies base by 10^scale, returning false if the
// value overflows. Passing a negative scale is undefined.
func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
switch scale {
case 0:
return base, true
case 1:
return int64MultiplyScale10(base)
case 2:
return int64MultiplyScale100(base)
case 3:
return int64MultiplyScale1000(base)
case 6:
return int64MultiplyScale(base, 1000000)
case 9:
return int64MultiplyScale(base, 1000000000)
default:
value := base
var ok bool
for i := Scale(0); i < scale; i++ {
if value, ok = int64MultiplyScale(value, 10); !ok {
return 0, false
}
}
return value, true
}
}
// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
// value is zero or the scale is reached. Passing a negative scale is undefined.
// The value returned, if not exact, is rounded away from zero.
func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
if scale == 0 {
return base, true
}
value := base
var fraction bool
for i := Scale(0); i < scale; i++ {
if !fraction && value%10 != 0 {
fraction = true
}
value = value / 10
if value == 0 {
if fraction {
if base > 0 {
return 1, false
}
return -1, false
}
return 0, true
}
}
if fraction {
if base > 0 {
value += 1
} else {
value += -1
}
}
return value, !fraction
}
func pow10Int64(b int64) int64 {
switch b {
case 0:
return 1
case 1:
return 10
case 2:
return 100
case 3:
return 1000
case 4:
return 10000
case 5:
return 100000
case 6:
return 1000000
case 7:
return 10000000
case 8:
return 100000000
case 9:
return 1000000000
case 10:
return 10000000000
case 11:
return 100000000000
case 12:
return 1000000000000
case 13:
return 10000000000000
case 14:
return 100000000000000
case 15:
return 1000000000000000
case 16:
return 10000000000000000
case 17:
return 100000000000000000
case 18:
return 1000000000000000000
default:
return 0
}
}
// powInt64 raises a to the bth power. Is not overflow aware.
func powInt64(a, b int64) int64 {
p := int64(1)
for b > 0 {
if b&1 != 0 {
p *= a
}
b >>= 1
a *= a
}
return p
}
// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
// false if no such division is possible. Dividing by negative scales is undefined.
func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
if scale == 0 {
return base, 0, true
}
// the max scale representable in base 10 in an int64 is 18 decimal places
if scale >= 18 {
return 0, base, false
}
divisor := pow10Int64(int64(scale))
return base / divisor, base % divisor, true
}
// removeInt64Factors divides in a loop; the return values have the property that
// value == result * base ^ scale
func removeInt64Factors(value int64, base int64) (result int64, times int32) {
times = 0
result = value
negative := result < 0
if negative {
result = -result
}
switch base {
// allow the compiler to optimize the common cases
case 10:
for result >= 10 && result%10 == 0 {
times++
result = result / 10
}
// allow the compiler to optimize the common cases
case 1024:
for result >= 1024 && result%1024 == 0 {
times++
result = result / 1024
}
default:
for result >= base && result%base == 0 {
times++
result = result / base
}
}
if negative {
result = -result
}
return result, times
}
// removeBigIntFactors divides in a loop; the return values have the property that
// d == result * factor ^ times
// d may be modified in place.
// If d == 0, then the return values will be (0, 0)
func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
q := big.NewInt(0)
m := big.NewInt(0)
for d.Cmp(bigZero) != 0 {
q.DivMod(d, factor, m)
if m.Cmp(bigZero) != 0 {
break
}
times++
d, q = q, d
}
return d, times
}

View File

@ -0,0 +1,768 @@
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"bytes"
"errors"
"fmt"
"math/big"
"regexp"
"strconv"
"strings"
flag "github.com/spf13/pflag"
inf "gopkg.in/inf.v0"
)
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and Int64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// NOTE: We reserve the right to amend this canonical format, perhaps to
// allow 1.5 to be canonical.
// TODO: Remove above disclaimer after all bikeshedding about format is over,
// or after March 2015.
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +gencopy=false
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
type Quantity struct {
// i is the quantity in int64 scaled form, if d.Dec == nil
i int64Amount
// d is the quantity in inf.Dec form if d.Dec != nil
d infDecAmount
// s is the generated value of this quantity to avoid recalculation
s string
// Change Format at will. See the comment for Canonicalize for
// more details.
Format
}
// CanonicalValue allows a quantity amount to be converted to a string.
type CanonicalValue interface {
// AsCanonicalBytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-10. Callers may
// pass a byte slice to the method to avoid allocations.
AsCanonicalBytes(out []byte) ([]byte, int32)
// AsCanonicalBase1024Bytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-1024. Callers
// may pass a byte slice to the method to avoid allocations.
AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
}
// Format lists the three possible formattings of a quantity.
type Format string
const (
DecimalExponent = Format("DecimalExponent") // e.g., 12e6
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
)
// MustParse turns the given string into a quantity or panics; for tests
// or others cases where you know the string is valid.
func MustParse(str string) Quantity {
q, err := ParseQuantity(str)
if err != nil {
panic(fmt.Errorf("cannot parse '%v': %v", str, err))
}
return q
}
const (
// splitREString is used to separate a number from its suffix; as such,
// this is overly permissive, but that's OK-- it will be checked later.
splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
)
var (
// splitRE is used to get the various parts of a number.
splitRE = regexp.MustCompile(splitREString)
// Errors that could happen while parsing a string.
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
ErrNumeric = errors.New("unable to parse numeric part of quantity")
ErrSuffix = errors.New("unable to parse quantity's suffix")
)
// parseQuantityString is a fast scanner for quantity values.
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
positive = true
pos := 0
end := len(str)
// handle leading sign
if pos < end {
switch str[0] {
case '-':
positive = false
pos++
case '+':
pos++
}
}
// strip leading zeros
Zeroes:
for i := pos; ; i++ {
if i >= end {
num = "0"
value = num
return
}
switch str[i] {
case '0':
pos++
default:
break Zeroes
}
}
// extract the numerator
Num:
for i := pos; ; i++ {
if i >= end {
num = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
num = str[pos:i]
pos = i
break Num
}
}
// if we stripped all numerator positions, always return 0
if len(num) == 0 {
num = "0"
}
// handle a denominator
if pos < end && str[pos] == '.' {
pos++
Denom:
for i := pos; ; i++ {
if i >= end {
denom = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
denom = str[pos:i]
pos = i
break Denom
}
}
// TODO: we currently allow 1.G, but we may not want to in the future.
// if len(denom) == 0 {
// err = ErrFormatWrong
// return
// }
}
value = str[0:pos]
// grab the elements of the suffix
suffixStart := pos
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
pos = i
break
}
}
if pos < end {
switch str[pos] {
case '-', '+':
pos++
}
}
Suffix:
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
break Suffix
}
}
// we encountered a non decimal in the Suffix loop, but the last character
// was not a valid exponent
err = ErrFormatWrong
return
}
// ParseQuantity turns str into a Quantity, or returns an error.
func ParseQuantity(str string) (Quantity, error) {
if len(str) == 0 {
return Quantity{}, ErrFormatWrong
}
if str == "0" {
return Quantity{Format: DecimalSI, s: str}, nil
}
positive, value, num, denom, suf, err := parseQuantityString(str)
if err != nil {
return Quantity{}, err
}
base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
if !ok {
return Quantity{}, ErrSuffix
}
precision := int32(0)
scale := int32(0)
mantissa := int64(1)
switch format {
case DecimalExponent, DecimalSI:
scale = exponent
precision = maxInt64Factors - int32(len(num)+len(denom))
case BinarySI:
scale = 0
switch {
case exponent >= 0 && len(denom) == 0:
// only handle positive binary numbers with the fast path
mantissa = int64(int64(mantissa) << uint64(exponent))
// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
default:
precision = -1
}
}
if precision >= 0 {
// if we have a denominator, shift the entire value to the left by the number of places in the
// denominator
scale -= int32(len(denom))
if scale >= int32(Nano) {
shifted := num + denom
var value int64
value, err := strconv.ParseInt(shifted, 10, 64)
if err != nil {
return Quantity{}, ErrNumeric
}
if result, ok := int64Multiply(value, int64(mantissa)); ok {
if !positive {
result = -result
}
// if the number is in canonical form, reuse the string
switch format {
case BinarySI:
if exponent%10 == 0 && (value&0x07 != 0) {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
default:
if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
}
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
}
}
}
amount := new(inf.Dec)
if _, ok := amount.SetString(value); !ok {
return Quantity{}, ErrNumeric
}
// So that no one but us has to think about suffixes, remove it.
if base == 10 {
amount.SetScale(amount.Scale() + Scale(exponent).infScale())
} else if base == 2 {
// numericSuffix = 2 ** exponent
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
ub := amount.UnscaledBig()
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
}
// Cap at min/max bounds.
sign := amount.Sign()
if sign == -1 {
amount.Neg(amount)
}
// This rounds non-zero values up to the minimum representable value, under the theory that
// if you want some resources, you should get some resources, even if you asked for way too small
// of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
// the side effect of rounding values < .5n to zero.
if v, ok := amount.Unscaled(); v != int64(0) || !ok {
amount.Round(amount, Nano.infScale(), inf.RoundUp)
}
// The max is just a simple cap.
// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
amount.Set(maxAllowed.Dec)
}
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
}
if sign == -1 {
amount.Neg(amount)
}
return Quantity{d: infDecAmount{amount}, Format: format}, nil
}
// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
//
// Note about BinarySI:
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
// -1 and +1, it will be emitted as if q.Format were DecimalSI.
// * Otherwise, if q.Format is set to BinarySI, frational parts of q.Amount will be
// rounded up. (1.1i becomes 2i.)
func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
if q.IsZero() {
return zeroBytes, nil
}
var rounded CanonicalValue
format := q.Format
switch format {
case DecimalExponent, DecimalSI:
case BinarySI:
if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
} else {
var exact bool
if rounded, exact = q.AsScale(0); !exact {
// Don't lose precision-- show as DecimalSI
format = DecimalSI
}
}
default:
format = DecimalExponent
}
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
// one of the other formats.
switch format {
case DecimalExponent, DecimalSI:
number, exponent := q.AsCanonicalBytes(out)
suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
return number, suffix
default:
// format must be BinarySI
number, exponent := rounded.AsCanonicalBase1024Bytes(out)
suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
return number, suffix
}
}
// AsInt64 returns a representation of the current value as an int64 if a fast conversion
// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
func (q *Quantity) AsInt64() (int64, bool) {
if q.d.Dec != nil {
return 0, false
}
return q.i.AsInt64()
}
// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
func (q *Quantity) ToDec() *Quantity {
if q.d.Dec == nil {
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
}
return q
}
// AsDec returns the quantity as represented by a scaled inf.Dec.
func (q *Quantity) AsDec() *inf.Dec {
if q.d.Dec != nil {
return q.d.Dec
}
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
return q.d.Dec
}
// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
// allocation.
func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
if q.d.Dec != nil {
return q.d.AsCanonicalBytes(out)
}
return q.i.AsCanonicalBytes(out)
}
// IsZero returns true if the quantity is equal to zero.
func (q *Quantity) IsZero() bool {
if q.d.Dec != nil {
return q.d.Dec.Sign() == 0
}
return q.i.value == 0
}
// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
// quantity is greater than zero.
func (q *Quantity) Sign() int {
if q.d.Dec != nil {
return q.d.Dec.Sign()
}
return q.i.Sign()
}
// AsScaled returns the current value, rounded up to the provided scale, and returns
// false if the scale resulted in a loss of precision.
func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
if q.d.Dec != nil {
return q.d.AsScale(scale)
}
return q.i.AsScale(scale)
}
// RoundUp updates the quantity to the provided scale, ensuring that the value is at
// least 1. False is returned if the rounding operation resulted in a loss of precision.
// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
func (q *Quantity) RoundUp(scale Scale) bool {
if q.d.Dec != nil {
q.s = ""
d, exact := q.d.AsScale(scale)
q.d = d
return exact
}
// avoid clearing the string value if we have already calculated it
if q.i.scale >= scale {
return true
}
q.s = ""
i, exact := q.i.AsScale(scale)
q.i = i
return exact
}
// Add adds the provide y quantity to the current value. If the current value is zero,
// the format of the quantity will be updated to the format of y.
func (q *Quantity) Add(y Quantity) {
q.s = ""
if q.d.Dec == nil && y.d.Dec == nil {
if q.i.value == 0 {
q.Format = y.Format
}
if q.i.Add(y.i) {
return
}
} else if q.IsZero() {
q.Format = y.Format
}
q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
}
// Sub subtracts the provided quantity from the current value in place. If the current
// value is zero, the format of the quantity will be updated to the format of y.
func (q *Quantity) Sub(y Quantity) {
q.s = ""
if q.IsZero() {
q.Format = y.Format
}
if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
return
}
q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
}
// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) Cmp(y Quantity) int {
if q.d.Dec == nil && y.d.Dec == nil {
return q.i.Cmp(y.i)
}
return q.AsDec().Cmp(y.AsDec())
}
// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) CmpInt64(y int64) int {
if q.d.Dec != nil {
return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
}
return q.i.Cmp(int64Amount{value: y})
}
// Neg sets quantity to be the negative value of itself.
func (q *Quantity) Neg() {
q.s = ""
if q.d.Dec == nil {
q.i.value = -q.i.value
return
}
q.d.Dec.Neg(q.d.Dec)
}
// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
// of most Quantity values.
const int64QuantityExpectedBytes = 18
// String formats the Quantity as a string, caching the result if not calculated.
// String is an expensive operation and caching this result significantly reduces the cost of
// normal parse / marshal operations on Quantity.
func (q *Quantity) String() string {
if len(q.s) == 0 {
result := make([]byte, 0, int64QuantityExpectedBytes)
number, suffix := q.CanonicalizeBytes(result)
number = append(number, suffix...)
q.s = string(number)
}
return q.s
}
// MarshalJSON implements the json.Marshaller interface.
func (q Quantity) MarshalJSON() ([]byte, error) {
if len(q.s) > 0 {
out := make([]byte, len(q.s)+2)
out[0], out[len(out)-1] = '"', '"'
copy(out[1:], q.s)
return out, nil
}
result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
result[0] = '"'
number, suffix := q.CanonicalizeBytes(result[1:1])
// if the same slice was returned to us that we passed in, avoid another allocation by copying number into
// the source slice and returning that
if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
number = append(number, suffix...)
number = append(number, '"')
return result[:1+len(number)], nil
}
// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
// append
result = result[:1]
result = append(result, number...)
result = append(result, suffix...)
result = append(result, '"')
return result, nil
}
// UnmarshalJSON implements the json.Unmarshaller interface.
// TODO: Remove support for leading/trailing whitespace
func (q *Quantity) UnmarshalJSON(value []byte) error {
l := len(value)
if l == 4 && bytes.Equal(value, []byte("null")) {
q.d.Dec = nil
q.i = int64Amount{}
return nil
}
if l >= 2 && value[0] == '"' && value[l-1] == '"' {
value = value[1 : l-1]
}
parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
if err != nil {
return err
}
// This copy is safe because parsed will not be referred to again.
*q = parsed
return nil
}
// NewQuantity returns a new Quantity representing the given
// value in the given format.
func NewQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value},
Format: format,
}
}
// NewMilliQuantity returns a new Quantity representing the given
// value * 1/1000 in the given format. Note that BinarySI formatting
// will round fractional values, and will be changed to DecimalSI for
// values x where (-1 < x < 1) && (x != 0).
func NewMilliQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: -3},
Format: format,
}
}
// NewScaledQuantity returns a new Quantity representing the given
// value * 10^scale in DecimalSI format.
func NewScaledQuantity(value int64, scale Scale) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: scale},
Format: DecimalSI,
}
}
// Value returns the value of q; any fractional part will be lost.
func (q *Quantity) Value() int64 {
return q.ScaledValue(0)
}
// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
// if that's a concern, call Value() first to verify the number is small enough.
func (q *Quantity) MilliValue() int64 {
return q.ScaledValue(Milli)
}
// ScaledValue returns the value of ceil(q * 10^scale); this could overflow an int64.
// To detect overflow, call Value() first and verify the expected magnitude.
func (q *Quantity) ScaledValue(scale Scale) int64 {
if q.d.Dec == nil {
i, _ := q.i.AsScaledInt64(scale)
return i
}
dec := q.d.Dec
return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
}
// Set sets q's value to be value.
func (q *Quantity) Set(value int64) {
q.SetScaled(value, 0)
}
// SetMilli sets q's value to be value * 1/1000.
func (q *Quantity) SetMilli(value int64) {
q.SetScaled(value, Milli)
}
// SetScaled sets q's value to be value * 10^scale
func (q *Quantity) SetScaled(value int64, scale Scale) {
q.s = ""
q.d.Dec = nil
q.i = int64Amount{value: value, scale: scale}
}
// Copy is a convenience function that makes a deep copy for you. Non-deep
// copies of quantities share pointers and you will regret that.
func (q *Quantity) Copy() *Quantity {
if q.d.Dec == nil {
return &Quantity{
s: q.s,
i: q.i,
Format: q.Format,
}
}
tmp := &inf.Dec{}
return &Quantity{
s: q.s,
d: infDecAmount{tmp.Set(q.d.Dec)},
Format: q.Format,
}
}
// qFlag is a helper type for the Flag function
type qFlag struct {
dest *Quantity
}
// Sets the value of the internal Quantity. (used by flag & pflag)
func (qf qFlag) Set(val string) error {
q, err := ParseQuantity(val)
if err != nil {
return err
}
// This copy is OK because q will not be referenced again.
*qf.dest = q
return nil
}
// Converts the value of the internal Quantity to a string. (used by flag & pflag)
func (qf qFlag) String() string {
return qf.dest.String()
}
// States the type of flag this is (Quantity). (used by pflag)
func (qf qFlag) Type() string {
return "quantity"
}
// QuantityFlag is a helper that makes a quantity flag (using standard flag package).
// Will panic if defaultValue is not a valid quantity.
func QuantityFlag(flagName, defaultValue, description string) *Quantity {
q := MustParse(defaultValue)
flag.Var(NewQuantityFlagValue(&q), flagName, description)
return &q
}
// NewQuantityFlagValue returns an object that can be used to back a flag,
// pointing at the given Quantity variable.
func NewQuantityFlagValue(q *Quantity) flag.Value {
return qFlag{q}
}

View File

@ -0,0 +1,95 @@
/*
Copyright 2015 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"sync"
)
var (
// A sync pool to reduce allocation.
intPool sync.Pool
maxInt64 = big.NewInt(math.MaxInt64)
)
func init() {
intPool.New = func() interface{} {
return &big.Int{}
}
}
// scaledValue scales given unscaled value from scale to new Scale and returns
// an int64. It ALWAYS rounds up the result when scale down. The final result might
// overflow.
//
// scale, newScale represents the scale of the unscaled decimal.
// The mathematical value of the decimal is unscaled * 10**(-scale).
func scaledValue(unscaled *big.Int, scale, newScale int) int64 {
dif := scale - newScale
if dif == 0 {
return unscaled.Int64()
}
// Handle scale up
// This is an easy case, we do not need to care about rounding and overflow.
// If any intermediate operation causes overflow, the result will overflow.
if dif < 0 {
return unscaled.Int64() * int64(math.Pow10(-dif))
}
// Handle scale down
// We have to be careful about the intermediate operations.
// fast path when unscaled < max.Int64 and exp(10,dif) < max.Int64
const log10MaxInt64 = 19
if unscaled.Cmp(maxInt64) < 0 && dif < log10MaxInt64 {
divide := int64(math.Pow10(dif))
result := unscaled.Int64() / divide
mod := unscaled.Int64() % divide
if mod != 0 {
return result + 1
}
return result
}
// We should only convert back to int64 when getting the result.
divisor := intPool.Get().(*big.Int)
exp := intPool.Get().(*big.Int)
result := intPool.Get().(*big.Int)
defer func() {
intPool.Put(divisor)
intPool.Put(exp)
intPool.Put(result)
}()
// divisor = 10^(dif)
// TODO: create loop up table if exp costs too much.
divisor.Exp(bigTen, exp.SetInt64(int64(dif)), nil)
// reuse exp
remainder := exp
// result = unscaled / divisor
// remainder = unscaled % divisor
result.DivMod(unscaled, divisor, remainder)
if remainder.Sign() != 0 {
return result.Int64() + 1
}
return result.Int64()
}

View File

@ -0,0 +1,198 @@
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"strconv"
)
type suffix string
// suffixer can interpret and construct suffixes.
type suffixer interface {
interpret(suffix) (base, exponent int32, fmt Format, ok bool)
construct(base, exponent int32, fmt Format) (s suffix, ok bool)
constructBytes(base, exponent int32, fmt Format) (s []byte, ok bool)
}
// quantitySuffixer handles suffixes for all three formats that quantity
// can handle.
var quantitySuffixer = newSuffixer()
type bePair struct {
base, exponent int32
}
type listSuffixer struct {
suffixToBE map[suffix]bePair
beToSuffix map[bePair]suffix
beToSuffixBytes map[bePair][]byte
}
func (ls *listSuffixer) addSuffix(s suffix, pair bePair) {
if ls.suffixToBE == nil {
ls.suffixToBE = map[suffix]bePair{}
}
if ls.beToSuffix == nil {
ls.beToSuffix = map[bePair]suffix{}
}
if ls.beToSuffixBytes == nil {
ls.beToSuffixBytes = map[bePair][]byte{}
}
ls.suffixToBE[s] = pair
ls.beToSuffix[pair] = s
ls.beToSuffixBytes[pair] = []byte(s)
}
func (ls *listSuffixer) lookup(s suffix) (base, exponent int32, ok bool) {
pair, ok := ls.suffixToBE[s]
if !ok {
return 0, 0, false
}
return pair.base, pair.exponent, true
}
func (ls *listSuffixer) construct(base, exponent int32) (s suffix, ok bool) {
s, ok = ls.beToSuffix[bePair{base, exponent}]
return
}
func (ls *listSuffixer) constructBytes(base, exponent int32) (s []byte, ok bool) {
s, ok = ls.beToSuffixBytes[bePair{base, exponent}]
return
}
type suffixHandler struct {
decSuffixes listSuffixer
binSuffixes listSuffixer
}
type fastLookup struct {
*suffixHandler
}
func (l fastLookup) interpret(s suffix) (base, exponent int32, format Format, ok bool) {
switch s {
case "":
return 10, 0, DecimalSI, true
case "n":
return 10, -9, DecimalSI, true
case "u":
return 10, -6, DecimalSI, true
case "m":
return 10, -3, DecimalSI, true
case "k":
return 10, 3, DecimalSI, true
case "M":
return 10, 6, DecimalSI, true
case "G":
return 10, 9, DecimalSI, true
}
return l.suffixHandler.interpret(s)
}
func newSuffixer() suffixer {
sh := &suffixHandler{}
// IMPORTANT: if you change this section you must change fastLookup
sh.binSuffixes.addSuffix("Ki", bePair{2, 10})
sh.binSuffixes.addSuffix("Mi", bePair{2, 20})
sh.binSuffixes.addSuffix("Gi", bePair{2, 30})
sh.binSuffixes.addSuffix("Ti", bePair{2, 40})
sh.binSuffixes.addSuffix("Pi", bePair{2, 50})
sh.binSuffixes.addSuffix("Ei", bePair{2, 60})
// Don't emit an error when trying to produce
// a suffix for 2^0.
sh.decSuffixes.addSuffix("", bePair{2, 0})
sh.decSuffixes.addSuffix("n", bePair{10, -9})
sh.decSuffixes.addSuffix("u", bePair{10, -6})
sh.decSuffixes.addSuffix("m", bePair{10, -3})
sh.decSuffixes.addSuffix("", bePair{10, 0})
sh.decSuffixes.addSuffix("k", bePair{10, 3})
sh.decSuffixes.addSuffix("M", bePair{10, 6})
sh.decSuffixes.addSuffix("G", bePair{10, 9})
sh.decSuffixes.addSuffix("T", bePair{10, 12})
sh.decSuffixes.addSuffix("P", bePair{10, 15})
sh.decSuffixes.addSuffix("E", bePair{10, 18})
return fastLookup{sh}
}
func (sh *suffixHandler) construct(base, exponent int32, fmt Format) (s suffix, ok bool) {
switch fmt {
case DecimalSI:
return sh.decSuffixes.construct(base, exponent)
case BinarySI:
return sh.binSuffixes.construct(base, exponent)
case DecimalExponent:
if base != 10 {
return "", false
}
if exponent == 0 {
return "", true
}
return suffix("e" + strconv.FormatInt(int64(exponent), 10)), true
}
return "", false
}
func (sh *suffixHandler) constructBytes(base, exponent int32, format Format) (s []byte, ok bool) {
switch format {
case DecimalSI:
return sh.decSuffixes.constructBytes(base, exponent)
case BinarySI:
return sh.binSuffixes.constructBytes(base, exponent)
case DecimalExponent:
if base != 10 {
return nil, false
}
if exponent == 0 {
return nil, true
}
result := make([]byte, 8, 8)
result[0] = 'e'
number := strconv.AppendInt(result[1:1], int64(exponent), 10)
if &result[1] == &number[0] {
return result[:1+len(number)], true
}
result = append(result[:1], number...)
return result, true
}
return nil, false
}
func (sh *suffixHandler) interpret(suffix suffix) (base, exponent int32, fmt Format, ok bool) {
// Try lookup tables first
if b, e, ok := sh.decSuffixes.lookup(suffix); ok {
return b, e, DecimalSI, true
}
if b, e, ok := sh.binSuffixes.lookup(suffix); ok {
return b, e, BinarySI, true
}
if len(suffix) > 1 && (suffix[0] == 'E' || suffix[0] == 'e') {
parsed, err := strconv.ParseInt(string(suffix[1:]), 10, 64)
if err != nil {
return 0, 0, DecimalExponent, false
}
return 10, int32(parsed), DecimalExponent, true
}
return 0, 0, DecimalExponent, false
}

View File

@ -0,0 +1,18 @@
// Copyright 2016 The appc Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package types
// UserAnnotations are arbitrary key-value pairs, to be supplied and interpreted by the user
type UserAnnotations map[string]string

View File

@ -0,0 +1,18 @@
// Copyright 2015 The appc Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package types
// UserLabels are arbitrary key-value pairs, to be supplied and interpreted by the user
type UserLabels map[string]string

View File

@ -40,8 +40,9 @@ type Volume struct {
// currently used only by "host"
// TODO(jonboulle): factor out?
Source string `json:"source,omitempty"`
ReadOnly *bool `json:"readOnly,omitempty"`
Source string `json:"source,omitempty"`
ReadOnly *bool `json:"readOnly,omitempty"`
Recursive *bool `json:"recursive,omitempty"`
// currently used only by "empty"
Mode *string `json:"mode,omitempty"`
@ -128,6 +129,10 @@ func (v Volume) String() string {
s = append(s, ",readOnly=")
s = append(s, strconv.FormatBool(*v.ReadOnly))
}
if v.Recursive != nil {
s = append(s, ",recursive=")
s = append(s, strconv.FormatBool(*v.Recursive))
}
switch v.Kind {
case "empty":
if *v.Mode != emptyVolumeDefaultMode {
@ -149,10 +154,8 @@ func (v Volume) String() string {
// VolumeFromString takes a command line volume parameter and returns a volume
//
// Example volume parameters:
// database,kind=host,source=/tmp,readOnly=true
// database,kind=host,source=/tmp,readOnly=true,recursive=true
func VolumeFromString(vp string) (*Volume, error) {
var vol Volume
vp = "name=" + vp
vpQuery, err := common.MakeQueryString(vp)
if err != nil {
@ -163,7 +166,12 @@ func VolumeFromString(vp string) (*Volume, error) {
if err != nil {
return nil, err
}
for key, val := range v {
return VolumeFromParams(v)
}
func VolumeFromParams(params map[string][]string) (*Volume, error) {
var vol Volume
for key, val := range params {
val := val
if len(val) > 1 {
return nil, fmt.Errorf("label %s with multiple values %q", key, val)
@ -186,6 +194,12 @@ func VolumeFromString(vp string) (*Volume, error) {
return nil, err
}
vol.ReadOnly = &ro
case "recursive":
rec, err := strconv.ParseBool(val[0])
if err != nil {
return nil, err
}
vol.Recursive = &rec
case "mode":
vol.Mode = &val[0]
case "uid":
@ -207,8 +221,7 @@ func VolumeFromString(vp string) (*Volume, error) {
maybeSetDefaults(&vol)
err = vol.assertValid()
if err != nil {
if err := vol.assertValid(); err != nil {
return nil, err
}

View File

@ -22,7 +22,7 @@ const (
// version represents the canonical version of the appc spec and tooling.
// For now, the schema and tooling is coupled with the spec itself, so
// this must be kept in sync with the VERSION file in the root of the repo.
version string = "0.8.1+git"
version string = "0.8.9+git"
)
var (