mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-09-05 19:21:37 +00:00
Fix trailing whitespace in all docs
This commit is contained in:
@@ -35,7 +35,7 @@ Documentation for other releases can be found at
|
||||
|
||||
Kubernetes is an open-source system for managing containerized applications across multiple hosts in a cluster. Kubernetes is intended to make deploying containerized/microservice-based applications easy but powerful.
|
||||
|
||||
Kubernetes provides mechanisms for application deployment, scheduling, updating, maintenance, and scaling. A key feature of Kubernetes is that it actively manages the containers to ensure that the state of the cluster continually matches the user's intentions. An operations user should be able to launch a micro-service, letting the scheduler find the right placement. We also want to improve the tools and experience for how users can roll-out applications through patterns like canary deployments.
|
||||
Kubernetes provides mechanisms for application deployment, scheduling, updating, maintenance, and scaling. A key feature of Kubernetes is that it actively manages the containers to ensure that the state of the cluster continually matches the user's intentions. An operations user should be able to launch a micro-service, letting the scheduler find the right placement. We also want to improve the tools and experience for how users can roll-out applications through patterns like canary deployments.
|
||||
|
||||
Kubernetes supports [Docker](http://www.docker.io) and [Rocket](https://coreos.com/blog/rocket/) containers, and other container image formats and container runtimes will be supported in the future.
|
||||
|
||||
@@ -45,7 +45,7 @@ In Kubernetes, all containers run inside [pods](pods.md). A pod can host a singl
|
||||
|
||||
Users can create and manage pods themselves, but Kubernetes drastically simplifies system management by allowing users to delegate two common pod-related activities: deploying multiple pod replicas based on the same pod configuration, and creating replacement pods when a pod or its machine fails. The Kubernetes API object that manages these behaviors is called a [replication controller](replication-controller.md). It defines a pod in terms of a template, that the system then instantiates as some number of pods (specified by the user). The replicated set of pods might constitute an entire application, a micro-service, or one layer in a multi-tier application. Once the pods are created, the system continually monitors their health and that of the machines they are running on; if a pod fails due to a software problem or machine failure, the replication controller automatically creates a new pod on a healthy machine, to maintain the set of pods at the desired replication level. Multiple pods from the same or different applications can share the same machine. Note that a replication controller is needed even in the case of a single non-replicated pod if the user wants it to be re-created when it or its machine fails.
|
||||
|
||||
Frequently it is useful to refer to a set of pods, for example to limit the set of pods on which a mutating operation should be performed, or that should be queried for status. As a general mechanism, users can attach to most Kubernetes API objects arbitrary key-value pairs called [labels](labels.md), and then use a set of label selectors (key-value queries over labels) to constrain the target of API operations. Each resource also has a map of string keys and values that can be used by external tooling to store and retrieve arbitrary metadata about this object, called [annotations](annotations.md).
|
||||
Frequently it is useful to refer to a set of pods, for example to limit the set of pods on which a mutating operation should be performed, or that should be queried for status. As a general mechanism, users can attach to most Kubernetes API objects arbitrary key-value pairs called [labels](labels.md), and then use a set of label selectors (key-value queries over labels) to constrain the target of API operations. Each resource also has a map of string keys and values that can be used by external tooling to store and retrieve arbitrary metadata about this object, called [annotations](annotations.md).
|
||||
|
||||
Kubernetes supports a unique [networking model](../admin/networking.md). Kubernetes encourages a flat address space and does not dynamically allocate ports, instead allowing users to select whichever ports are convenient for them. To achieve this, it allocates an IP address for each pod.
|
||||
|
||||
|
Reference in New Issue
Block a user