mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-07-24 12:15:52 +00:00
Merge pull request #130491 from swatisehgal/cpu-allocation-numa-spread-metric
Add metrics to capture CPU allocation spread across NUMA nodes
This commit is contained in:
commit
1039822a74
@ -18,6 +18,7 @@ package cpumanager
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
|
||||
v1 "k8s.io/api/core/v1"
|
||||
utilfeature "k8s.io/apiserver/pkg/util/feature"
|
||||
@ -389,7 +390,7 @@ func (p *staticPolicy) Allocate(s state.State, pod *v1.Pod, container *v1.Contai
|
||||
|
||||
s.SetCPUSet(string(pod.UID), container.Name, cpuAllocation.CPUs)
|
||||
p.updateCPUsToReuse(pod, container, cpuAllocation.CPUs)
|
||||
p.updateMetricsOnAllocate(cpuAllocation)
|
||||
p.updateMetricsOnAllocate(s, cpuAllocation)
|
||||
|
||||
klog.V(4).InfoS("Allocated exclusive CPUs", "pod", klog.KObj(pod), "containerName", container.Name, "cpuset", cpuAllocation.CPUs.String())
|
||||
return nil
|
||||
@ -416,7 +417,8 @@ func (p *staticPolicy) RemoveContainer(s state.State, podUID string, containerNa
|
||||
// Mutate the shared pool, adding released cpus.
|
||||
toRelease = toRelease.Difference(cpusInUse)
|
||||
s.SetDefaultCPUSet(s.GetDefaultCPUSet().Union(toRelease))
|
||||
p.updateMetricsOnRelease(toRelease)
|
||||
p.updateMetricsOnRelease(s, toRelease)
|
||||
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@ -755,33 +757,60 @@ func (p *staticPolicy) getAlignedCPUs(numaAffinity bitmask.BitMask, allocatableC
|
||||
|
||||
func (p *staticPolicy) initializeMetrics(s state.State) {
|
||||
metrics.CPUManagerSharedPoolSizeMilliCores.Set(float64(p.GetAvailableCPUs(s).Size() * 1000))
|
||||
metrics.CPUManagerExclusiveCPUsAllocationCount.Set(float64(countExclusiveCPUs(s)))
|
||||
metrics.ContainerAlignedComputeResourcesFailure.WithLabelValues(metrics.AlignScopeContainer, metrics.AlignedPhysicalCPU).Add(0) // ensure the value exists
|
||||
metrics.ContainerAlignedComputeResources.WithLabelValues(metrics.AlignScopeContainer, metrics.AlignedPhysicalCPU).Add(0) // ensure the value exists
|
||||
metrics.ContainerAlignedComputeResources.WithLabelValues(metrics.AlignScopeContainer, metrics.AlignedUncoreCache).Add(0) // ensure the value exists
|
||||
totalAssignedCPUs := getTotalAssignedExclusiveCPUs(s)
|
||||
metrics.CPUManagerExclusiveCPUsAllocationCount.Set(float64(totalAssignedCPUs.Size()))
|
||||
updateAllocationPerNUMAMetric(p.topology, totalAssignedCPUs)
|
||||
}
|
||||
|
||||
func (p *staticPolicy) updateMetricsOnAllocate(cpuAlloc topology.Allocation) {
|
||||
func (p *staticPolicy) updateMetricsOnAllocate(s state.State, cpuAlloc topology.Allocation) {
|
||||
ncpus := cpuAlloc.CPUs.Size()
|
||||
metrics.CPUManagerExclusiveCPUsAllocationCount.Add(float64(ncpus))
|
||||
metrics.CPUManagerSharedPoolSizeMilliCores.Add(float64(-ncpus * 1000))
|
||||
if cpuAlloc.Aligned.UncoreCache {
|
||||
metrics.ContainerAlignedComputeResources.WithLabelValues(metrics.AlignScopeContainer, metrics.AlignedUncoreCache).Inc()
|
||||
}
|
||||
totalAssignedCPUs := getTotalAssignedExclusiveCPUs(s)
|
||||
updateAllocationPerNUMAMetric(p.topology, totalAssignedCPUs)
|
||||
}
|
||||
|
||||
func (p *staticPolicy) updateMetricsOnRelease(cset cpuset.CPUSet) {
|
||||
func (p *staticPolicy) updateMetricsOnRelease(s state.State, cset cpuset.CPUSet) {
|
||||
ncpus := cset.Size()
|
||||
metrics.CPUManagerExclusiveCPUsAllocationCount.Add(float64(-ncpus))
|
||||
metrics.CPUManagerSharedPoolSizeMilliCores.Add(float64(ncpus * 1000))
|
||||
totalAssignedCPUs := getTotalAssignedExclusiveCPUs(s)
|
||||
updateAllocationPerNUMAMetric(p.topology, totalAssignedCPUs.Difference(cset))
|
||||
}
|
||||
|
||||
func countExclusiveCPUs(s state.State) int {
|
||||
exclusiveCPUs := 0
|
||||
for _, cpuAssign := range s.GetCPUAssignments() {
|
||||
for _, cset := range cpuAssign {
|
||||
exclusiveCPUs += cset.Size()
|
||||
func getTotalAssignedExclusiveCPUs(s state.State) cpuset.CPUSet {
|
||||
totalAssignedCPUs := cpuset.New()
|
||||
for _, assignment := range s.GetCPUAssignments() {
|
||||
for _, cset := range assignment {
|
||||
totalAssignedCPUs = totalAssignedCPUs.Union(cset)
|
||||
}
|
||||
|
||||
}
|
||||
return totalAssignedCPUs
|
||||
}
|
||||
|
||||
func updateAllocationPerNUMAMetric(topo *topology.CPUTopology, allocatedCPUs cpuset.CPUSet) {
|
||||
numaCount := make(map[int]int)
|
||||
|
||||
// Count CPUs allocated per NUMA node
|
||||
for _, cpuID := range allocatedCPUs.UnsortedList() {
|
||||
numaNode, err := topo.CPUNUMANodeID(cpuID)
|
||||
if err != nil {
|
||||
//NOTE: We are logging the error but it is highly unlikely to happen as the CPUset
|
||||
// is already computed, evaluated and there is no room for user tampering.
|
||||
klog.ErrorS(err, "Unable to determine NUMA node", "cpuID", cpuID)
|
||||
}
|
||||
numaCount[numaNode]++
|
||||
}
|
||||
|
||||
// Update metric
|
||||
for numaNode, count := range numaCount {
|
||||
metrics.CPUManagerAllocationPerNUMA.WithLabelValues(strconv.Itoa(numaNode)).Set(float64(count))
|
||||
}
|
||||
return exclusiveCPUs
|
||||
}
|
||||
|
@ -113,6 +113,7 @@ const (
|
||||
CPUManagerPinningErrorsTotalKey = "cpu_manager_pinning_errors_total"
|
||||
CPUManagerSharedPoolSizeMilliCoresKey = "cpu_manager_shared_pool_size_millicores"
|
||||
CPUManagerExclusiveCPUsAllocationCountKey = "cpu_manager_exclusive_cpu_allocation_count"
|
||||
CPUManagerAllocationPerNUMAKey = "cpu_manager_allocation_per_numa"
|
||||
|
||||
// Metrics to track the Memory manager behavior
|
||||
MemoryManagerPinningRequestsTotalKey = "memory_manager_pinning_requests_total"
|
||||
@ -815,6 +816,17 @@ var (
|
||||
},
|
||||
)
|
||||
|
||||
// CPUManagerAllocationPerNUMA tracks the count of CPUs allocated per NUMA node
|
||||
CPUManagerAllocationPerNUMA = metrics.NewGaugeVec(
|
||||
&metrics.GaugeOpts{
|
||||
Subsystem: KubeletSubsystem,
|
||||
Name: CPUManagerAllocationPerNUMAKey,
|
||||
Help: "Number of CPUs allocated per NUMA node",
|
||||
StabilityLevel: metrics.ALPHA,
|
||||
},
|
||||
[]string{AlignedNUMANode},
|
||||
)
|
||||
|
||||
// ContainerAlignedComputeResources reports the count of resources allocation which granted aligned resources, per alignment boundary
|
||||
ContainerAlignedComputeResources = metrics.NewCounterVec(
|
||||
&metrics.CounterOpts{
|
||||
@ -1126,6 +1138,7 @@ func Register(collectors ...metrics.StableCollector) {
|
||||
legacyregistry.MustRegister(CPUManagerPinningErrorsTotal)
|
||||
legacyregistry.MustRegister(CPUManagerSharedPoolSizeMilliCores)
|
||||
legacyregistry.MustRegister(CPUManagerExclusiveCPUsAllocationCount)
|
||||
legacyregistry.MustRegister(CPUManagerAllocationPerNUMA)
|
||||
legacyregistry.MustRegister(ContainerAlignedComputeResources)
|
||||
legacyregistry.MustRegister(ContainerAlignedComputeResourcesFailure)
|
||||
legacyregistry.MustRegister(MemoryManagerPinningRequestTotal)
|
||||
|
@ -34,6 +34,7 @@ import (
|
||||
kubeletconfig "k8s.io/kubernetes/pkg/kubelet/apis/config"
|
||||
"k8s.io/kubernetes/pkg/kubelet/apis/podresources"
|
||||
"k8s.io/kubernetes/pkg/kubelet/cm/cpumanager"
|
||||
"k8s.io/kubernetes/pkg/kubelet/metrics"
|
||||
"k8s.io/kubernetes/pkg/kubelet/util"
|
||||
"k8s.io/kubernetes/test/e2e/feature"
|
||||
"k8s.io/kubernetes/test/e2e/framework"
|
||||
@ -389,6 +390,129 @@ var _ = SIGDescribe("CPU Manager Metrics", framework.WithSerial(), feature.CPUMa
|
||||
ginkgo.By("Ensuring the metrics match the expectations about alignment metrics a few more times")
|
||||
gomega.Consistently(ctx, getKubeletMetrics, 1*time.Minute, 15*time.Second).Should(matchAlignmentMetrics)
|
||||
})
|
||||
ginkgo.It("should report zero counters for allocation per NUMA after a fresh restart", func(ctx context.Context) {
|
||||
|
||||
cpuPolicyOptions := map[string]string{
|
||||
cpumanager.DistributeCPUsAcrossNUMAOption: "true",
|
||||
cpumanager.FullPCPUsOnlyOption: "true",
|
||||
}
|
||||
newCfg := configureCPUManagerInKubelet(oldCfg,
|
||||
&cpuManagerKubeletArguments{
|
||||
policyName: string(cpumanager.PolicyStatic),
|
||||
reservedSystemCPUs: cpuset.New(0),
|
||||
enableCPUManagerOptions: true,
|
||||
options: cpuPolicyOptions,
|
||||
},
|
||||
)
|
||||
|
||||
updateKubeletConfig(ctx, f, newCfg, true)
|
||||
|
||||
ginkgo.By("Checking the cpumanager allocation per NUMA metric right after the kubelet restart, with no pods running")
|
||||
numaNodes, _, _ := hostCheck()
|
||||
|
||||
framework.Logf("numaNodes on the system %d", numaNodes)
|
||||
|
||||
keys := make(map[interface{}]types.GomegaMatcher)
|
||||
idFn := makeCustomLabelID(metrics.AlignedNUMANode)
|
||||
|
||||
for i := 0; i < numaNodes; i++ {
|
||||
keys["kubelet_cpu_manager_allocation_per_numa"] = gstruct.MatchAllElements(idFn, gstruct.Elements{
|
||||
fmt.Sprintf("%d", i): timelessSample(0),
|
||||
})
|
||||
|
||||
}
|
||||
|
||||
matchSpreadMetrics := gstruct.MatchKeys(gstruct.IgnoreExtras, keys)
|
||||
|
||||
ginkgo.By("Giving the Kubelet time to start up and produce metrics")
|
||||
gomega.Eventually(ctx, getKubeletMetrics, 1*time.Minute, 15*time.Second).Should(matchSpreadMetrics)
|
||||
ginkgo.By("Ensuring the metrics match the expectations a few more times")
|
||||
gomega.Consistently(ctx, getKubeletMetrics, 1*time.Minute, 15*time.Second).Should(matchSpreadMetrics)
|
||||
|
||||
})
|
||||
|
||||
ginkgo.It("should report allocation per NUMA metric when handling guaranteed pods", func(ctx context.Context) {
|
||||
var cpusNumPerNUMA, coresNumPerNUMA, numaNodes, threadsPerCore int
|
||||
cpuPolicyOptions := map[string]string{
|
||||
cpumanager.DistributeCPUsAcrossNUMAOption: "true",
|
||||
cpumanager.FullPCPUsOnlyOption: "true",
|
||||
}
|
||||
newCfg := configureCPUManagerInKubelet(oldCfg,
|
||||
&cpuManagerKubeletArguments{
|
||||
policyName: string(cpumanager.PolicyStatic),
|
||||
reservedSystemCPUs: cpuset.New(0),
|
||||
enableCPUManagerOptions: true,
|
||||
options: cpuPolicyOptions,
|
||||
},
|
||||
)
|
||||
|
||||
updateKubeletConfig(ctx, f, newCfg, true)
|
||||
|
||||
numaNodes, coresNumPerNUMA, threadsPerCore = hostCheck()
|
||||
cpusNumPerNUMA = coresNumPerNUMA * threadsPerCore
|
||||
|
||||
framework.Logf("numaNodes on the system %d", numaNodes)
|
||||
framework.Logf("Cores per NUMA on the system %d", coresNumPerNUMA)
|
||||
framework.Logf("Threads per Core on the system %d", threadsPerCore)
|
||||
framework.Logf("CPUs per NUMA on the system %d", cpusNumPerNUMA)
|
||||
|
||||
smtLevel = getSMTLevel()
|
||||
framework.Logf("SMT Level on the system %d", smtLevel)
|
||||
|
||||
ginkgo.By("Querying the podresources endpoint to get the baseline")
|
||||
endpoint, err := util.LocalEndpoint(defaultPodResourcesPath, podresources.Socket)
|
||||
framework.ExpectNoError(err, "LocalEndpoint() failed err: %v", err)
|
||||
|
||||
cli, conn, err := podresources.GetV1Client(endpoint, defaultPodResourcesTimeout, defaultPodResourcesMaxSize)
|
||||
framework.ExpectNoError(err, "GetV1Client() failed err: %v", err)
|
||||
defer func() {
|
||||
framework.ExpectNoError(conn.Close())
|
||||
}()
|
||||
|
||||
ginkgo.By("Checking the pool allocatable resources from the kubelet")
|
||||
resp, err := cli.GetAllocatableResources(ctx, &kubeletpodresourcesv1.AllocatableResourcesRequest{})
|
||||
framework.ExpectNoError(err, "failed to get the kubelet allocatable resources")
|
||||
allocatableCPUs, _ := demuxCPUsAndDevicesFromGetAllocatableResources(resp)
|
||||
|
||||
// 'distribute-cpus-across-numa' policy option ensures that CPU allocations are evenly distributed
|
||||
// across NUMA nodes in cases where more than one NUMA node is required to satisfy the allocation.
|
||||
// So, we want to ensure that the CPU Request exceeds the number of CPUs that can fit within a single
|
||||
// NUMA node. We have to pick cpuRequest such that:
|
||||
// 1. CPURequest > cpusNumPerNUMA
|
||||
// 2. Not occupy all the CPUs on the node ande leave room for reserved CPU
|
||||
// 3. CPURequest is a multiple if number of NUMA nodes to allow equal CPU distribution across NUMA nodes
|
||||
//
|
||||
// In summary: cpusNumPerNUMA < CPURequest < ((cpusNumPerNuma * numaNodes) - reservedCPUscount)
|
||||
// Considering all these constraints we select: CPURequest= (cpusNumPerNUMA-smtLevel)*numaNodes
|
||||
cpuRequest := (cpusNumPerNUMA - smtLevel) * numaNodes
|
||||
if cpuRequest > allocatableCPUs.Size() {
|
||||
e2eskipper.Skipf("Pod requesting %d CPUs which is more than allocatable CPUs:%d", cpuRequest, allocatableCPUs.Size())
|
||||
}
|
||||
|
||||
ginkgo.By("Creating the test pod")
|
||||
testPod = e2epod.NewPodClient(f).Create(ctx, makeGuaranteedCPUExclusiveSleeperPod("test-pod-allocation-per-numa", cpuRequest))
|
||||
|
||||
ginkgo.By("Checking the cpumanager metrics after pod creation")
|
||||
|
||||
keys := make(map[interface{}]types.GomegaMatcher)
|
||||
idFn := makeCustomLabelID(metrics.AlignedNUMANode)
|
||||
|
||||
// On a clean environment with no other pods running if distribute-across-numa policy option is enabled
|
||||
for i := 0; i < numaNodes; i++ {
|
||||
keys["kubelet_cpu_manager_allocation_per_numa"] = gstruct.MatchAllElements(idFn, gstruct.Elements{
|
||||
fmt.Sprintf("%d", i): timelessSample(2),
|
||||
})
|
||||
|
||||
}
|
||||
|
||||
matchSpreadMetrics := gstruct.MatchKeys(gstruct.IgnoreExtras, keys)
|
||||
|
||||
ginkgo.By("Giving the Kubelet time to start up and produce metrics")
|
||||
gomega.Eventually(ctx, getKubeletMetrics, 1*time.Minute, 15*time.Second).Should(matchSpreadMetrics)
|
||||
ginkgo.By("Ensuring the metrics match the expectations a few more times")
|
||||
gomega.Consistently(ctx, getKubeletMetrics, 1*time.Minute, 15*time.Second).Should(matchSpreadMetrics)
|
||||
})
|
||||
|
||||
})
|
||||
})
|
||||
|
||||
|
@ -187,6 +187,13 @@ func makeCustomPairID(pri, sec string) func(interface{}) string {
|
||||
}
|
||||
}
|
||||
|
||||
func makeCustomLabelID(label string) func(interface{}) string {
|
||||
return func(element interface{}) string {
|
||||
el := element.(*model.Sample)
|
||||
return string(el.Metric[model.LabelName(label)])
|
||||
}
|
||||
}
|
||||
|
||||
func boundedSample(lower, upper interface{}) types.GomegaMatcher {
|
||||
return gstruct.PointTo(gstruct.MatchAllFields(gstruct.Fields{
|
||||
// We already check Metric when matching the Id
|
||||
|
Loading…
Reference in New Issue
Block a user