clock: Deprecate types to use k8s.io/utils/clock

* Each exposed type/func is aliased to an equilvalent in
  k8s.io/utils/clock.
* Adds deprecation notices to each type.
* This package should be completely deleted in 1.25.
* The test file is deleted since types are now references
  to k8s.io/utils/clock

Signed-off-by: Madhav Jivrajani <madhav.jiv@gmail.com>
This commit is contained in:
Madhav Jivrajani 2021-12-09 16:16:44 +05:30
parent 4ca13e6f0e
commit 1e1ff064c0
2 changed files with 37 additions and 790 deletions

View File

@ -17,429 +17,65 @@ limitations under the License.
package clock package clock
import ( import (
"sync"
"time" "time"
clocks "k8s.io/utils/clock"
testclocks "k8s.io/utils/clock/testing"
) )
// PassiveClock allows for injecting fake or real clocks into code // PassiveClock allows for injecting fake or real clocks into code
// that needs to read the current time but does not support scheduling // that needs to read the current time but does not support scheduling
// activity in the future. // activity in the future.
type PassiveClock interface { //
Now() time.Time // Deprecated: Use k8s.io/utils/clock.PassiveClock instead.
Since(time.Time) time.Duration type PassiveClock = clocks.PassiveClock
}
// Clock allows for injecting fake or real clocks into code that // Clock allows for injecting fake or real clocks into code that
// needs to do arbitrary things based on time. // needs to do arbitrary things based on time.
type Clock interface { //
PassiveClock // Deprecated: Use k8s.io/utils/clock.WithTickerAndDelayedExecution instead.
After(time.Duration) <-chan time.Time type Clock = clocks.WithTickerAndDelayedExecution
AfterFunc(time.Duration, func()) Timer
NewTimer(time.Duration) Timer
Sleep(time.Duration)
NewTicker(time.Duration) Ticker
}
// RealClock really calls time.Now() // Deprecated: Use k8s.io/utils/clock.RealClock instead.
type RealClock struct{} type RealClock = clocks.RealClock
// Now returns the current time.
func (RealClock) Now() time.Time {
return time.Now()
}
// Since returns time since the specified timestamp.
func (RealClock) Since(ts time.Time) time.Duration {
return time.Since(ts)
}
// After is the same as time.After(d).
func (RealClock) After(d time.Duration) <-chan time.Time {
return time.After(d)
}
// AfterFunc is the same as time.AfterFunc(d, f).
func (RealClock) AfterFunc(d time.Duration, f func()) Timer {
return &realTimer{
timer: time.AfterFunc(d, f),
}
}
// NewTimer returns a new Timer.
func (RealClock) NewTimer(d time.Duration) Timer {
return &realTimer{
timer: time.NewTimer(d),
}
}
// NewTicker returns a new Ticker.
func (RealClock) NewTicker(d time.Duration) Ticker {
return &realTicker{
ticker: time.NewTicker(d),
}
}
// Sleep pauses the RealClock for duration d.
func (RealClock) Sleep(d time.Duration) {
time.Sleep(d)
}
// FakePassiveClock implements PassiveClock, but returns an arbitrary time. // FakePassiveClock implements PassiveClock, but returns an arbitrary time.
type FakePassiveClock struct { //
lock sync.RWMutex // Deprecated: Use k8s.io/utils/clock/testing.FakePassiveClock instead.
time time.Time type FakePassiveClock = testclocks.FakePassiveClock
}
// FakeClock implements Clock, but returns an arbitrary time. // FakeClock implements Clock, but returns an arbitrary time.
type FakeClock struct { //
FakePassiveClock // Deprecated: Use k8s.io/utils/clock/testing.FakeClock instead.
type FakeClock = testclocks.FakeClock
// waiters are waiting for the fake time to pass their specified time
waiters []fakeClockWaiter
}
type fakeClockWaiter struct {
targetTime time.Time
stepInterval time.Duration
skipIfBlocked bool
destChan chan time.Time
afterFunc func()
}
// NewFakePassiveClock returns a new FakePassiveClock. // NewFakePassiveClock returns a new FakePassiveClock.
func NewFakePassiveClock(t time.Time) *FakePassiveClock { //
return &FakePassiveClock{ // Deprecated: Use k8s.io/utils/clock/testing.NewFakePassiveClock instead.
time: t, func NewFakePassiveClock(t time.Time) *testclocks.FakePassiveClock {
} return testclocks.NewFakePassiveClock(t)
} }
// NewFakeClock returns a new FakeClock // NewFakeClock returns a new FakeClock.
func NewFakeClock(t time.Time) *FakeClock { //
return &FakeClock{ // Deprecated: Use k8s.io/utils/clock/testing.NewFakeClock instead.
FakePassiveClock: *NewFakePassiveClock(t), func NewFakeClock(t time.Time) *testclocks.FakeClock {
} return testclocks.NewFakeClock(t)
} }
// Now returns f's time. // IntervalClock implements Clock, but each invocation of Now steps
func (f *FakePassiveClock) Now() time.Time { // the clock forward the specified duration.
f.lock.RLock() //
defer f.lock.RUnlock() // Deprecated: Use k8s.io/utils/clock/testing.IntervalClock instead.
return f.time type IntervalClock = testclocks.IntervalClock
}
// Since returns time since the time in f.
func (f *FakePassiveClock) Since(ts time.Time) time.Duration {
f.lock.RLock()
defer f.lock.RUnlock()
return f.time.Sub(ts)
}
// SetTime sets the time on the FakePassiveClock.
func (f *FakePassiveClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.time = t
}
// After is the Fake version of time.After(d).
func (f *FakeClock) After(d time.Duration) <-chan time.Time {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
})
return ch
}
// AfterFunc is the Fake version of time.AfterFunc(d, callback).
func (f *FakeClock) AfterFunc(d time.Duration, cb func()) Timer {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
timer := &fakeTimer{
fakeClock: f,
waiter: fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
afterFunc: cb,
},
}
f.waiters = append(f.waiters, timer.waiter)
return timer
}
// NewTimer is the Fake version of time.NewTimer(d).
func (f *FakeClock) NewTimer(d time.Duration) Timer {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
timer := &fakeTimer{
fakeClock: f,
waiter: fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
},
}
f.waiters = append(f.waiters, timer.waiter)
return timer
}
// NewTicker returns a new Ticker.
func (f *FakeClock) NewTicker(d time.Duration) Ticker {
f.lock.Lock()
defer f.lock.Unlock()
tickTime := f.time.Add(d)
ch := make(chan time.Time, 1) // hold one tick
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: tickTime,
stepInterval: d,
skipIfBlocked: true,
destChan: ch,
})
return &fakeTicker{
c: ch,
}
}
// Step moves clock by Duration, notifies anyone that's called After, Tick, or NewTimer
func (f *FakeClock) Step(d time.Duration) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(f.time.Add(d))
}
// SetTime sets the time on a FakeClock.
func (f *FakeClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(t)
}
// Actually changes the time and checks any waiters. f must be write-locked.
func (f *FakeClock) setTimeLocked(t time.Time) {
f.time = t
newWaiters := make([]fakeClockWaiter, 0, len(f.waiters))
for i := range f.waiters {
w := &f.waiters[i]
if !w.targetTime.After(t) {
if w.skipIfBlocked {
select {
case w.destChan <- t:
default:
}
} else {
w.destChan <- t
}
if w.afterFunc != nil {
w.afterFunc()
}
if w.stepInterval > 0 {
for !w.targetTime.After(t) {
w.targetTime = w.targetTime.Add(w.stepInterval)
}
newWaiters = append(newWaiters, *w)
}
} else {
newWaiters = append(newWaiters, f.waiters[i])
}
}
f.waiters = newWaiters
}
// HasWaiters returns true if After or AfterFunc has been called on f but not yet satisfied
// (so you can write race-free tests).
func (f *FakeClock) HasWaiters() bool {
f.lock.RLock()
defer f.lock.RUnlock()
return len(f.waiters) > 0
}
// Sleep pauses the FakeClock for duration d.
func (f *FakeClock) Sleep(d time.Duration) {
f.Step(d)
}
// IntervalClock implements Clock, but each invocation of Now steps the clock forward the specified duration
type IntervalClock struct {
Time time.Time
Duration time.Duration
}
// Now returns i's time.
func (i *IntervalClock) Now() time.Time {
i.Time = i.Time.Add(i.Duration)
return i.Time
}
// Since returns time since the time in i.
func (i *IntervalClock) Since(ts time.Time) time.Duration {
return i.Time.Sub(ts)
}
// After is currently unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) After(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement After")
}
// AfterFunc is currently unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) AfterFunc(d time.Duration, cb func()) Timer {
panic("IntervalClock doesn't implement AfterFunc")
}
// NewTimer is currently unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTimer(d time.Duration) Timer {
panic("IntervalClock doesn't implement NewTimer")
}
// NewTicker is currently unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTicker(d time.Duration) Ticker {
panic("IntervalClock doesn't implement NewTicker")
}
// Sleep is currently unimplemented; will panic.
func (*IntervalClock) Sleep(d time.Duration) {
panic("IntervalClock doesn't implement Sleep")
}
// Timer allows for injecting fake or real timers into code that // Timer allows for injecting fake or real timers into code that
// needs to do arbitrary things based on time. // needs to do arbitrary things based on time.
type Timer interface {
C() <-chan time.Time
Stop() bool
Reset(d time.Duration) bool
}
// realTimer is backed by an actual time.Timer.
type realTimer struct {
timer *time.Timer
}
// C returns the underlying timer's channel.
func (r *realTimer) C() <-chan time.Time {
return r.timer.C
}
// Stop calls Stop() on the underlying timer.
func (r *realTimer) Stop() bool {
return r.timer.Stop()
}
// Reset calls Reset() on the underlying timer.
func (r *realTimer) Reset(d time.Duration) bool {
return r.timer.Reset(d)
}
// fakeTimer implements Timer based on a FakeClock.
type fakeTimer struct {
fakeClock *FakeClock
waiter fakeClockWaiter
}
// C returns the channel that notifies when this timer has fired.
func (f *fakeTimer) C() <-chan time.Time {
return f.waiter.destChan
}
// Stop conditionally stops the timer. If the timer has neither fired
// nor been stopped then this call stops the timer and returns true,
// otherwise this call returns false. This is like time.Timer::Stop.
func (f *fakeTimer) Stop() bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
// The timer has already fired or been stopped, unless it is found
// among the clock's waiters.
stopped := false
oldWaiters := f.fakeClock.waiters
newWaiters := make([]fakeClockWaiter, 0, len(oldWaiters))
seekChan := f.waiter.destChan
for i := range oldWaiters {
// Identify the timer's fakeClockWaiter by the identity of the
// destination channel, nothing else is necessarily unique and
// constant since the timer's creation.
if oldWaiters[i].destChan == seekChan {
stopped = true
} else {
newWaiters = append(newWaiters, oldWaiters[i])
}
}
f.fakeClock.waiters = newWaiters
return stopped
}
// Reset conditionally updates the firing time of the timer. If the
// timer has neither fired nor been stopped then this call resets the
// timer to the fake clock's "now" + d and returns true, otherwise
// it creates a new waiter, adds it to the clock, and returns true.
// //
// It is not possible to return false, because a fake timer can be reset // Deprecated: Use k8s.io/utils/clock.Timer instead.
// from any state (waiting to fire, already fired, and stopped). type Timer = clocks.Timer
// Ticker defines the Ticker interface.
// //
// See the GoDoc for time.Timer::Reset for more context on why // Deprecated: Use k8s.io/utils/clock.Ticker instead.
// the return value of Reset() is not useful. type Ticker = clocks.Ticker
func (f *fakeTimer) Reset(d time.Duration) bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
waiters := f.fakeClock.waiters
seekChan := f.waiter.destChan
for i := range waiters {
if waiters[i].destChan == seekChan {
waiters[i].targetTime = f.fakeClock.time.Add(d)
return true
}
}
// No existing waiter, timer has already fired or been reset.
// We should still enable Reset() to succeed by creating a
// new waiter and adding it to the clock's waiters.
newWaiter := fakeClockWaiter{
targetTime: f.fakeClock.time.Add(d),
destChan: seekChan,
}
f.fakeClock.waiters = append(f.fakeClock.waiters, newWaiter)
return true
}
// Ticker defines the Ticker interface
type Ticker interface {
C() <-chan time.Time
Stop()
}
type realTicker struct {
ticker *time.Ticker
}
func (t *realTicker) C() <-chan time.Time {
return t.ticker.C
}
func (t *realTicker) Stop() {
t.ticker.Stop()
}
type fakeTicker struct {
c <-chan time.Time
}
func (t *fakeTicker) C() <-chan time.Time {
return t.c
}
func (t *fakeTicker) Stop() {
}

View File

@ -1,389 +0,0 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package clock
import (
"testing"
"time"
)
var (
_ = Clock(RealClock{})
_ = Clock(&FakeClock{})
_ = Clock(&IntervalClock{})
_ = Timer(&realTimer{})
_ = Timer(&fakeTimer{})
_ = Ticker(&realTicker{})
_ = Ticker(&fakeTicker{})
)
type SettablePassiveClock interface {
PassiveClock
SetTime(time.Time)
}
func exercisePassiveClock(t *testing.T, pc SettablePassiveClock) {
t1 := time.Now()
t2 := t1.Add(time.Hour)
pc.SetTime(t1)
tx := pc.Now()
if tx != t1 {
t.Errorf("SetTime(%#+v); Now() => %#+v", t1, tx)
}
dx := pc.Since(t1)
if dx != 0 {
t.Errorf("Since() => %v", dx)
}
pc.SetTime(t2)
dx = pc.Since(t1)
if dx != time.Hour {
t.Errorf("Since() => %v", dx)
}
tx = pc.Now()
if tx != t2 {
t.Errorf("Now() => %#+v", tx)
}
}
func TestFakePassiveClock(t *testing.T) {
startTime := time.Now()
tc := NewFakePassiveClock(startTime)
exercisePassiveClock(t, tc)
}
func TestFakeClock(t *testing.T) {
startTime := time.Now()
tc := NewFakeClock(startTime)
exercisePassiveClock(t, tc)
tc.SetTime(startTime)
tc.Step(time.Second)
now := tc.Now()
if now.Sub(startTime) != time.Second {
t.Errorf("input: %s now=%s gap=%s expected=%s", startTime, now, now.Sub(startTime), time.Second)
}
}
func TestFakeClockSleep(t *testing.T) {
startTime := time.Now()
tc := NewFakeClock(startTime)
tc.Sleep(time.Duration(1) * time.Hour)
now := tc.Now()
if now.Sub(startTime) != time.Hour {
t.Errorf("Fake sleep failed, expected time to advance by one hour, instead, its %v", now.Sub(startTime))
}
}
func TestFakeAfter(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
oneSec := tc.After(time.Second)
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
oneOhOneSec := tc.After(time.Second + time.Millisecond)
twoSec := tc.After(2 * time.Second)
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(999 * time.Millisecond)
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Millisecond)
select {
case <-oneSec:
// Expected!
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Millisecond)
select {
case <-oneSec:
// should not double-trigger!
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
// Expected!
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
}
func TestFakeAfterFunc(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
expectOneSecTimerFire := false
oneSecTimerFire := 0
tc.AfterFunc(time.Second, func() {
if !expectOneSecTimerFire {
t.Errorf("oneSecTimer func fired")
} else {
oneSecTimerFire++
}
})
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
expectOneOhOneSecTimerFire := false
oneOhOneSecTimerFire := 0
tc.AfterFunc(time.Second+time.Millisecond, func() {
if !expectOneOhOneSecTimerFire {
t.Errorf("oneOhOneSecTimer func fired")
} else {
oneOhOneSecTimerFire++
}
})
expectTwoSecTimerFire := false
twoSecTimerFire := 0
twoSecTimer := tc.AfterFunc(2*time.Second, func() {
if !expectTwoSecTimerFire {
t.Errorf("twoSecTimer func fired")
} else {
twoSecTimerFire++
}
})
tc.Step(999 * time.Millisecond)
expectOneSecTimerFire = true
tc.Step(time.Millisecond)
if oneSecTimerFire != 1 {
t.Errorf("expected oneSecTimerFire=1, got %d", oneSecTimerFire)
}
expectOneSecTimerFire = false
expectOneOhOneSecTimerFire = true
tc.Step(time.Millisecond)
if oneOhOneSecTimerFire != 1 {
// should not double-trigger!
t.Errorf("expected oneOhOneSecTimerFire=1, got %d", oneOhOneSecTimerFire)
}
expectOneOhOneSecTimerFire = false
// ensure a canceled timer doesn't fire
twoSecTimer.Stop()
tc.Step(time.Second)
}
func TestFakeTimer(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
oneSec := tc.NewTimer(time.Second)
twoSec := tc.NewTimer(time.Second * 2)
treSec := tc.NewTimer(time.Second * 3)
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
tc.Step(999999999 * time.Nanosecond) // t=.999,999,999
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Nanosecond) // t=1
select {
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
select {
case <-oneSec.C():
// Expected!
default:
t.Errorf("unexpected channel non-read")
}
tc.Step(time.Nanosecond) // t=1.000,000,001
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
if oneSec.Stop() {
t.Errorf("Expected oneSec.Stop() to return false")
}
if !twoSec.Stop() {
t.Errorf("Expected twoSec.Stop() to return true")
}
tc.Step(time.Second) // t=2.000,000,001
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
if !twoSec.Reset(time.Second) {
t.Errorf("Expected twoSec.Reset() to return true")
}
if !treSec.Reset(time.Second) {
t.Errorf("Expected treSec.Reset() to return true")
}
tc.Step(time.Nanosecond * 999999999) // t=3.0
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
t.Errorf("unexpected channel read")
case <-treSec.C():
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Nanosecond) // t=3.000,000,001
select {
case <-oneSec.C():
t.Errorf("unexpected channel read")
case <-twoSec.C():
// Expected!
default:
t.Errorf("unexpected channel non-read")
}
select {
case <-treSec.C():
// Expected!
default:
t.Errorf("unexpected channel non-read")
}
}
func TestFakeTick(t *testing.T) {
tc := NewFakeClock(time.Now())
if tc.HasWaiters() {
t.Errorf("unexpected waiter?")
}
oneSec := tc.NewTicker(time.Second).C()
if !tc.HasWaiters() {
t.Errorf("unexpected lack of waiter?")
}
oneOhOneSec := tc.NewTicker(time.Second + time.Millisecond).C()
twoSec := tc.NewTicker(2 * time.Second).C()
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(999 * time.Millisecond) // t=.999
select {
case <-oneSec:
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
}
tc.Step(time.Millisecond) // t=1.000
select {
case <-oneSec:
// Expected!
case <-oneOhOneSec:
t.Errorf("unexpected channel read")
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Millisecond) // t=1.001
select {
case <-oneSec:
// should not double-trigger!
t.Errorf("unexpected channel read")
case <-oneOhOneSec:
// Expected!
case <-twoSec:
t.Errorf("unexpected channel read")
default:
t.Errorf("unexpected non-channel read")
}
tc.Step(time.Second) // t=2.001
tc.Step(time.Second) // t=3.001
tc.Step(time.Second) // t=4.001
tc.Step(time.Second) // t=5.001
// The one second ticker should not accumulate ticks
accumulatedTicks := 0
drained := false
for !drained {
select {
case <-oneSec:
accumulatedTicks++
default:
drained = true
}
}
if accumulatedTicks != 1 {
t.Errorf("unexpected number of accumulated ticks: %d", accumulatedTicks)
}
}