mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-12-07 18:06:21 +00:00
Extent the NodeResourcesBalancedAllocation plugin to cover more resources
Signed-off-by: Dave Chen <dave.chen@arm.com>
This commit is contained in:
@@ -23,6 +23,8 @@ import (
|
||||
|
||||
v1 "k8s.io/api/core/v1"
|
||||
"k8s.io/apimachinery/pkg/runtime"
|
||||
"k8s.io/kubernetes/pkg/scheduler/apis/config"
|
||||
"k8s.io/kubernetes/pkg/scheduler/apis/config/validation"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/feature"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/names"
|
||||
@@ -53,11 +55,10 @@ func (ba *BalancedAllocation) Score(ctx context.Context, state *framework.CycleS
|
||||
}
|
||||
|
||||
// ba.score favors nodes with balanced resource usage rate.
|
||||
// It calculates the difference between the cpu and memory fraction of capacity,
|
||||
// and prioritizes the host based on how close the two metrics are to each other.
|
||||
// Detail: score = (1 - variance(cpuFraction,memoryFraction,volumeFraction)) * MaxNodeScore. The algorithm is partly inspired by:
|
||||
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced
|
||||
// Resource Utilization"
|
||||
// It calculates the standard deviation for those resources and prioritizes the node based on how close the usage of those resources is to each other.
|
||||
// Detail: score = (1 - std) * MaxNodeScore, where std is calculated by the root square of Σ((fraction(i)-mean)^2)/len(resources)
|
||||
// The algorithm is partly inspired by:
|
||||
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced Resource Utilization"
|
||||
return ba.score(pod, nodeInfo)
|
||||
}
|
||||
|
||||
@@ -67,42 +68,63 @@ func (ba *BalancedAllocation) ScoreExtensions() framework.ScoreExtensions {
|
||||
}
|
||||
|
||||
// NewBalancedAllocation initializes a new plugin and returns it.
|
||||
func NewBalancedAllocation(_ runtime.Object, h framework.Handle, fts feature.Features) (framework.Plugin, error) {
|
||||
func NewBalancedAllocation(baArgs runtime.Object, h framework.Handle, fts feature.Features) (framework.Plugin, error) {
|
||||
args, ok := baArgs.(*config.NodeResourcesBalancedAllocationArgs)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("want args to be of type NodeResourcesBalancedAllocationArgs, got %T", baArgs)
|
||||
}
|
||||
|
||||
if err := validation.ValidateNodeResourcesBalancedAllocationArgs(nil, args); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
resToWeightMap := make(resourceToWeightMap)
|
||||
|
||||
for _, resource := range args.Resources {
|
||||
resToWeightMap[v1.ResourceName(resource.Name)] = resource.Weight
|
||||
}
|
||||
|
||||
return &BalancedAllocation{
|
||||
handle: h,
|
||||
resourceAllocationScorer: resourceAllocationScorer{
|
||||
Name: BalancedAllocationName,
|
||||
scorer: balancedResourceScorer,
|
||||
resourceToWeightMap: defaultRequestedRatioResources,
|
||||
resourceToWeightMap: resToWeightMap,
|
||||
enablePodOverhead: fts.EnablePodOverhead,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
// todo: use resource weights in the scorer function
|
||||
func balancedResourceScorer(requested, allocable resourceToValueMap) int64 {
|
||||
cpuFraction := fractionOfCapacity(requested[v1.ResourceCPU], allocable[v1.ResourceCPU])
|
||||
memoryFraction := fractionOfCapacity(requested[v1.ResourceMemory], allocable[v1.ResourceMemory])
|
||||
// fractions might be greater than 1 because pods with no requests get minimum
|
||||
// values.
|
||||
if cpuFraction > 1 {
|
||||
cpuFraction = 1
|
||||
}
|
||||
if memoryFraction > 1 {
|
||||
memoryFraction = 1
|
||||
var resourceToFractions []float64
|
||||
var totalFraction float64
|
||||
for name, value := range requested {
|
||||
fraction := float64(value) / float64(allocable[name])
|
||||
if fraction > 1 {
|
||||
fraction = 1
|
||||
}
|
||||
totalFraction += fraction
|
||||
resourceToFractions = append(resourceToFractions, fraction)
|
||||
}
|
||||
|
||||
// Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
|
||||
// respectively. Multiplying the absolute value of the difference by `MaxNodeScore` scales the value to
|
||||
// 0-MaxNodeScore with 0 representing well balanced allocation and `MaxNodeScore` poorly balanced. Subtracting it from
|
||||
// `MaxNodeScore` leads to the score which also scales from 0 to `MaxNodeScore` while `MaxNodeScore` representing well balanced.
|
||||
diff := math.Abs(cpuFraction - memoryFraction)
|
||||
return int64((1 - diff) * float64(framework.MaxNodeScore))
|
||||
}
|
||||
std := 0.0
|
||||
|
||||
func fractionOfCapacity(requested, capacity int64) float64 {
|
||||
if capacity == 0 {
|
||||
return 1
|
||||
// For most cases, resources are limited to cpu and memory, the std could be simplified to std := (fraction1-fraction2)/2
|
||||
// len(fractions) > 2: calculate std based on the well-known formula - root square of Σ((fraction(i)-mean)^2)/len(fractions)
|
||||
// Otherwise, set the std to zero is enough.
|
||||
if len(resourceToFractions) == 2 {
|
||||
std = math.Abs((resourceToFractions[0] - resourceToFractions[1]) / 2)
|
||||
|
||||
} else if len(resourceToFractions) > 2 {
|
||||
mean := totalFraction / float64(len(resourceToFractions))
|
||||
var sum float64
|
||||
for _, fraction := range resourceToFractions {
|
||||
sum = sum + (fraction-mean)*(fraction-mean)
|
||||
}
|
||||
std = math.Sqrt(sum / float64(len(resourceToFractions)))
|
||||
}
|
||||
return float64(requested) / float64(capacity)
|
||||
|
||||
// STD (standard deviation) is always a positive value. 1-deviation lets the score to be higher for node which has least deviation and
|
||||
// multiplying it with `MaxNodeScore` provides the scaling factor needed.
|
||||
return int64((1 - std) * float64(framework.MaxNodeScore))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user