mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-07-28 14:07:14 +00:00
Add optimizations to reduce iterations in distributed NUMA algorithm
Signed-off-by: Kevin Klues <kklues@nvidia.com>
This commit is contained in:
parent
70e0f47191
commit
86f9c266bc
@ -27,6 +27,13 @@ import (
|
||||
"k8s.io/kubernetes/pkg/kubelet/cm/cpuset"
|
||||
)
|
||||
|
||||
type LoopControl int
|
||||
|
||||
const (
|
||||
Continue LoopControl = iota
|
||||
Break
|
||||
)
|
||||
|
||||
type mapIntInt map[int]int
|
||||
|
||||
func (m mapIntInt) Clone() mapIntInt {
|
||||
@ -70,6 +77,13 @@ func standardDeviation(xs []int) float64 {
|
||||
return math.Sqrt(sum / float64(len(xs)))
|
||||
}
|
||||
|
||||
func min(x, y int) int {
|
||||
if x < y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
type numaOrSocketsFirstFuncs interface {
|
||||
takeFullFirstLevel()
|
||||
takeFullSecondLevel()
|
||||
@ -350,6 +364,31 @@ func (a *cpuAccumulator) takeRemainingCPUs() {
|
||||
}
|
||||
}
|
||||
|
||||
func (a *cpuAccumulator) rangeNUMANodesNeededToSatisfy(cpuGroupSize int) (int, int) {
|
||||
// Get the total number of NUMA nodes that have CPUs available on them.
|
||||
numNUMANodesAvailable := a.details.NUMANodes().Size()
|
||||
|
||||
// Get the total number of CPUs available across all NUMA nodes.
|
||||
numCPUsAvailable := a.details.CPUs().Size()
|
||||
|
||||
// Calculate the number of available 'cpuGroups' across all NUMA nodes as
|
||||
// well as the number of 'cpuGroups' that need to be allocated (rounding up).
|
||||
numCPUGroupsAvailable := (numCPUsAvailable-1)/cpuGroupSize + 1
|
||||
numCPUGroupsNeeded := (a.numCPUsNeeded-1)/cpuGroupSize + 1
|
||||
|
||||
// Calculate the number of available 'cpuGroups' per NUMA Node (rounding up).
|
||||
numCPUGroupsPerNUMANode := (numCPUGroupsAvailable-1)/numNUMANodesAvailable + 1
|
||||
|
||||
// Calculate the minimum number of numa nodes required to satisfy the
|
||||
// allocation (rounding up).
|
||||
minNUMAs := (numCPUGroupsNeeded-1)/numCPUGroupsPerNUMANode + 1
|
||||
|
||||
// Calculate the maximum number of numa nodes required to satisfy the allocation.
|
||||
maxNUMAs := min(numCPUGroupsNeeded, numNUMANodesAvailable)
|
||||
|
||||
return minNUMAs, maxNUMAs
|
||||
}
|
||||
|
||||
func (a *cpuAccumulator) needs(n int) bool {
|
||||
return a.numCPUsNeeded >= n
|
||||
}
|
||||
@ -364,21 +403,25 @@ func (a *cpuAccumulator) isFailed() bool {
|
||||
|
||||
// iterateCombinations walks through all n-choose-k subsets of size k in n and
|
||||
// calls function 'f()' on each subset. For example, if n={0,1,2}, and k=2,
|
||||
// then f() will be called on the subsets {0,1}, {0,2}. and {1,2}.
|
||||
func (a *cpuAccumulator) iterateCombinations(n []int, k int, f func([]int)) {
|
||||
// then f() will be called on the subsets {0,1}, {0,2}. and {1,2}. If f() ever
|
||||
// returns 'Break', we break early and exit the loop.
|
||||
func (a *cpuAccumulator) iterateCombinations(n []int, k int, f func([]int) LoopControl) {
|
||||
if k < 1 {
|
||||
return
|
||||
}
|
||||
|
||||
var helper func(n []int, k int, start int, accum []int, f func([]int))
|
||||
helper = func(n []int, k int, start int, accum []int, f func([]int)) {
|
||||
var helper func(n []int, k int, start int, accum []int, f func([]int) LoopControl) LoopControl
|
||||
helper = func(n []int, k int, start int, accum []int, f func([]int) LoopControl) LoopControl {
|
||||
if k == 0 {
|
||||
f(accum)
|
||||
return
|
||||
return f(accum)
|
||||
}
|
||||
for i := start; i <= len(n)-k; i++ {
|
||||
helper(n, k-1, i+1, append(accum, n[i]), f)
|
||||
control := helper(n, k-1, i+1, append(accum, n[i]), f)
|
||||
if control == Break {
|
||||
return Break
|
||||
}
|
||||
}
|
||||
return Continue
|
||||
}
|
||||
|
||||
helper(n, k, 0, []int{}, f)
|
||||
@ -500,29 +543,34 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
// Get the list of NUMA nodes represented by the set of CPUs in 'availableCPUs'.
|
||||
numas := acc.sortAvailableNUMANodes()
|
||||
|
||||
// Calculate the minimum and maximum possible number of NUMA nodes that
|
||||
// could satisfy this request. This is used to optimize how many iterations
|
||||
// of the loop we need to go through below.
|
||||
minNUMAs, maxNUMAs := acc.rangeNUMANodesNeededToSatisfy(cpuGroupSize)
|
||||
|
||||
// Try combinations of 1,2,3,... NUMA nodes until we find a combination
|
||||
// where we can evenly distribute CPUs across them.
|
||||
for i := range numas {
|
||||
// Iterate through the various n-choose-k NUMA node combinations (where
|
||||
// k=i+1 for this iteration of the loop), looking for the combination
|
||||
// of NUMA nodes that can best have CPUs distributed across them.
|
||||
// where we can evenly distribute CPUs across them. To optimize things, we
|
||||
// don't always start at 1 and end at len(numas). Instead, we use the
|
||||
// values of 'minNUMAs' and 'maxNUMAs' calculated above.
|
||||
for k := minNUMAs; k <= maxNUMAs; k++ {
|
||||
// Iterate through the various n-choose-k NUMA node combinations,
|
||||
// looking for the combination of NUMA nodes that can best have CPUs
|
||||
// distributed across them.
|
||||
var bestBalance float64 = math.MaxFloat64
|
||||
var bestRemainder []int = nil
|
||||
var bestCombo []int = nil
|
||||
acc.iterateCombinations(numas, i+1, func(combo []int) {
|
||||
acc.iterateCombinations(numas, k, func(combo []int) LoopControl {
|
||||
// If we've already found a combo with a balance of 0 in a
|
||||
// different iteration, then don't bother checking any others.
|
||||
// TODO: Add a way to just short circuit iterateCombinations() so
|
||||
// we don't keep looping once such a combo is found.
|
||||
if bestBalance == 0 {
|
||||
return
|
||||
return Break
|
||||
}
|
||||
|
||||
// Check that this combination of NUMA nodes has enough CPUs to
|
||||
// satisfy the allocation overall.
|
||||
cpus := acc.details.CPUsInNUMANodes(combo...)
|
||||
if cpus.Size() < numCPUs {
|
||||
return
|
||||
return Continue
|
||||
}
|
||||
|
||||
// Check that CPUs can be handed out in groups of size
|
||||
@ -532,7 +580,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
numCPUGroups += (acc.details.CPUsInNUMANodes(numa).Size() / cpuGroupSize)
|
||||
}
|
||||
if (numCPUGroups * cpuGroupSize) < numCPUs {
|
||||
return
|
||||
return Continue
|
||||
}
|
||||
|
||||
// Check that each NUMA node in this combination can allocate an
|
||||
@ -542,7 +590,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
for _, numa := range combo {
|
||||
cpus := acc.details.CPUsInNUMANodes(numa)
|
||||
if cpus.Size() < distribution {
|
||||
return
|
||||
return Continue
|
||||
}
|
||||
}
|
||||
|
||||
@ -578,7 +626,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
// Otherwise, find the best "balance score" when allocating the
|
||||
// remainder CPUs across different subsets of NUMA nodes in 'combo'.
|
||||
// These remainder CPUs are handed out in groups of size 'cpuGroupSize'.
|
||||
acc.iterateCombinations(combo, remainder/cpuGroupSize, func(subset []int) {
|
||||
acc.iterateCombinations(combo, remainder/cpuGroupSize, func(subset []int) LoopControl {
|
||||
// Make a local copy of 'availableAfterAllocation'.
|
||||
availableAfterAllocation := availableAfterAllocation.Clone()
|
||||
|
||||
@ -598,6 +646,8 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
bestLocalBalance = balance
|
||||
bestLocalRemainder = subset
|
||||
}
|
||||
|
||||
return Continue
|
||||
})
|
||||
|
||||
// If the best "balance score" for this combo is less than the
|
||||
@ -608,6 +658,8 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
|
||||
bestRemainder = bestLocalRemainder
|
||||
bestCombo = combo
|
||||
}
|
||||
|
||||
return Continue
|
||||
})
|
||||
|
||||
// If we made it through all of the iterations above without finding a
|
||||
|
Loading…
Reference in New Issue
Block a user