Add optimizations to reduce iterations in distributed NUMA algorithm

Signed-off-by: Kevin Klues <kklues@nvidia.com>
This commit is contained in:
Kevin Klues 2021-10-16 19:26:56 +00:00
parent 70e0f47191
commit 86f9c266bc

View File

@ -27,6 +27,13 @@ import (
"k8s.io/kubernetes/pkg/kubelet/cm/cpuset"
)
type LoopControl int
const (
Continue LoopControl = iota
Break
)
type mapIntInt map[int]int
func (m mapIntInt) Clone() mapIntInt {
@ -70,6 +77,13 @@ func standardDeviation(xs []int) float64 {
return math.Sqrt(sum / float64(len(xs)))
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
type numaOrSocketsFirstFuncs interface {
takeFullFirstLevel()
takeFullSecondLevel()
@ -350,6 +364,31 @@ func (a *cpuAccumulator) takeRemainingCPUs() {
}
}
func (a *cpuAccumulator) rangeNUMANodesNeededToSatisfy(cpuGroupSize int) (int, int) {
// Get the total number of NUMA nodes that have CPUs available on them.
numNUMANodesAvailable := a.details.NUMANodes().Size()
// Get the total number of CPUs available across all NUMA nodes.
numCPUsAvailable := a.details.CPUs().Size()
// Calculate the number of available 'cpuGroups' across all NUMA nodes as
// well as the number of 'cpuGroups' that need to be allocated (rounding up).
numCPUGroupsAvailable := (numCPUsAvailable-1)/cpuGroupSize + 1
numCPUGroupsNeeded := (a.numCPUsNeeded-1)/cpuGroupSize + 1
// Calculate the number of available 'cpuGroups' per NUMA Node (rounding up).
numCPUGroupsPerNUMANode := (numCPUGroupsAvailable-1)/numNUMANodesAvailable + 1
// Calculate the minimum number of numa nodes required to satisfy the
// allocation (rounding up).
minNUMAs := (numCPUGroupsNeeded-1)/numCPUGroupsPerNUMANode + 1
// Calculate the maximum number of numa nodes required to satisfy the allocation.
maxNUMAs := min(numCPUGroupsNeeded, numNUMANodesAvailable)
return minNUMAs, maxNUMAs
}
func (a *cpuAccumulator) needs(n int) bool {
return a.numCPUsNeeded >= n
}
@ -364,21 +403,25 @@ func (a *cpuAccumulator) isFailed() bool {
// iterateCombinations walks through all n-choose-k subsets of size k in n and
// calls function 'f()' on each subset. For example, if n={0,1,2}, and k=2,
// then f() will be called on the subsets {0,1}, {0,2}. and {1,2}.
func (a *cpuAccumulator) iterateCombinations(n []int, k int, f func([]int)) {
// then f() will be called on the subsets {0,1}, {0,2}. and {1,2}. If f() ever
// returns 'Break', we break early and exit the loop.
func (a *cpuAccumulator) iterateCombinations(n []int, k int, f func([]int) LoopControl) {
if k < 1 {
return
}
var helper func(n []int, k int, start int, accum []int, f func([]int))
helper = func(n []int, k int, start int, accum []int, f func([]int)) {
var helper func(n []int, k int, start int, accum []int, f func([]int) LoopControl) LoopControl
helper = func(n []int, k int, start int, accum []int, f func([]int) LoopControl) LoopControl {
if k == 0 {
f(accum)
return
return f(accum)
}
for i := start; i <= len(n)-k; i++ {
helper(n, k-1, i+1, append(accum, n[i]), f)
control := helper(n, k-1, i+1, append(accum, n[i]), f)
if control == Break {
return Break
}
}
return Continue
}
helper(n, k, 0, []int{}, f)
@ -500,29 +543,34 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
// Get the list of NUMA nodes represented by the set of CPUs in 'availableCPUs'.
numas := acc.sortAvailableNUMANodes()
// Calculate the minimum and maximum possible number of NUMA nodes that
// could satisfy this request. This is used to optimize how many iterations
// of the loop we need to go through below.
minNUMAs, maxNUMAs := acc.rangeNUMANodesNeededToSatisfy(cpuGroupSize)
// Try combinations of 1,2,3,... NUMA nodes until we find a combination
// where we can evenly distribute CPUs across them.
for i := range numas {
// Iterate through the various n-choose-k NUMA node combinations (where
// k=i+1 for this iteration of the loop), looking for the combination
// of NUMA nodes that can best have CPUs distributed across them.
// where we can evenly distribute CPUs across them. To optimize things, we
// don't always start at 1 and end at len(numas). Instead, we use the
// values of 'minNUMAs' and 'maxNUMAs' calculated above.
for k := minNUMAs; k <= maxNUMAs; k++ {
// Iterate through the various n-choose-k NUMA node combinations,
// looking for the combination of NUMA nodes that can best have CPUs
// distributed across them.
var bestBalance float64 = math.MaxFloat64
var bestRemainder []int = nil
var bestCombo []int = nil
acc.iterateCombinations(numas, i+1, func(combo []int) {
acc.iterateCombinations(numas, k, func(combo []int) LoopControl {
// If we've already found a combo with a balance of 0 in a
// different iteration, then don't bother checking any others.
// TODO: Add a way to just short circuit iterateCombinations() so
// we don't keep looping once such a combo is found.
if bestBalance == 0 {
return
return Break
}
// Check that this combination of NUMA nodes has enough CPUs to
// satisfy the allocation overall.
cpus := acc.details.CPUsInNUMANodes(combo...)
if cpus.Size() < numCPUs {
return
return Continue
}
// Check that CPUs can be handed out in groups of size
@ -532,7 +580,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
numCPUGroups += (acc.details.CPUsInNUMANodes(numa).Size() / cpuGroupSize)
}
if (numCPUGroups * cpuGroupSize) < numCPUs {
return
return Continue
}
// Check that each NUMA node in this combination can allocate an
@ -542,7 +590,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
for _, numa := range combo {
cpus := acc.details.CPUsInNUMANodes(numa)
if cpus.Size() < distribution {
return
return Continue
}
}
@ -578,7 +626,7 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
// Otherwise, find the best "balance score" when allocating the
// remainder CPUs across different subsets of NUMA nodes in 'combo'.
// These remainder CPUs are handed out in groups of size 'cpuGroupSize'.
acc.iterateCombinations(combo, remainder/cpuGroupSize, func(subset []int) {
acc.iterateCombinations(combo, remainder/cpuGroupSize, func(subset []int) LoopControl {
// Make a local copy of 'availableAfterAllocation'.
availableAfterAllocation := availableAfterAllocation.Clone()
@ -598,6 +646,8 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
bestLocalBalance = balance
bestLocalRemainder = subset
}
return Continue
})
// If the best "balance score" for this combo is less than the
@ -608,6 +658,8 @@ func takeByTopologyNUMADistributed(topo *topology.CPUTopology, availableCPUs cpu
bestRemainder = bestLocalRemainder
bestCombo = combo
}
return Continue
})
// If we made it through all of the iterations above without finding a