Merge pull request #4935 from a-robinson/histogram

Use the new prometheuse histogram type rather than client-side summaries for apiserver latency statistics
This commit is contained in:
Victor Marmol 2015-03-02 08:50:07 -08:00
commit 93dafdf6b1
38 changed files with 1284 additions and 136 deletions

37
Godeps/Godeps.json generated
View File

@ -5,6 +5,11 @@
"./..."
],
"Deps": [
{
"ImportPath": "bitbucket.org/ww/goautoneg",
"Comment": "null-5",
"Rev": "75cd24fc2f2c2a2088577d12123ddee5f54e0675"
},
{
"ImportPath": "code.google.com/p/gcfg",
"Rev": "c2d3050044d05357eaf6c3547249ba57c5e235cb"
@ -44,6 +49,10 @@
"Comment": "v0.6.2-10-g51fe59a",
"Rev": "51fe59aca108dc5680109e7b2051cbdcfa5a253c"
},
{
"ImportPath": "github.com/beorn7/perks/quantile",
"Rev": "b965b613227fddccbfffe13eae360ed3fa822f8d"
},
{
"ImportPath": "github.com/coreos/go-etcd/etcd",
"Comment": "v0.2.0-rc1-120-g23142f6",
@ -194,39 +203,29 @@
"Comment": "v1.0-28-g8adf9e1730c5",
"Rev": "8adf9e1730c55cdc590de7d49766cb2acc88d8f2"
},
{
"ImportPath": "github.com/prometheus/client_golang/_vendor/goautoneg",
"Comment": "0.1.0-11-gc70db11",
"Rev": "c70db11f1ee77a34066aa41345dca4b105c2ed06"
},
{
"ImportPath": "github.com/prometheus/client_golang/_vendor/perks/quantile",
"Comment": "0.1.0-11-gc70db11",
"Rev": "c70db11f1ee77a34066aa41345dca4b105c2ed06"
},
{
"ImportPath": "github.com/prometheus/client_golang/model",
"Comment": "0.1.0-11-gc70db11",
"Rev": "c70db11f1ee77a34066aa41345dca4b105c2ed06"
"Comment": "0.2.0-5-gde5f7a2",
"Rev": "de5f7a2db9d883392ce3ad667087280fe1ff9cea"
},
{
"ImportPath": "github.com/prometheus/client_golang/prometheus",
"Comment": "0.1.0-11-gc70db11",
"Rev": "c70db11f1ee77a34066aa41345dca4b105c2ed06"
"Comment": "0.2.0-5-gde5f7a2",
"Rev": "de5f7a2db9d883392ce3ad667087280fe1ff9cea"
},
{
"ImportPath": "github.com/prometheus/client_golang/text",
"Comment": "0.1.0-11-gc70db11",
"Rev": "c70db11f1ee77a34066aa41345dca4b105c2ed06"
"Comment": "0.2.0-5-gde5f7a2",
"Rev": "de5f7a2db9d883392ce3ad667087280fe1ff9cea"
},
{
"ImportPath": "github.com/prometheus/client_model/go",
"Comment": "model-0.0.2-10-gbc9454c",
"Rev": "bc9454ca562dc050e060ea61a1c0e562a189850f"
"Comment": "model-0.0.2-12-gfa8ad6f",
"Rev": "fa8ad6fec33561be4280a8f0514318c79d7f6cb6"
},
{
"ImportPath": "github.com/prometheus/procfs",
"Rev": "92faa308558161acab0ada1db048e9996ecec160"
"Rev": "6c34ef819e19b4e16f410100ace4aa006f0e3bf8"
},
{
"ImportPath": "github.com/racker/perigee",

View File

@ -5,11 +5,12 @@ package quantile_test
import (
"bufio"
"fmt"
"github.com/bmizerany/perks/quantile"
"log"
"os"
"strconv"
"time"
"github.com/beorn7/perks/quantile"
)
func Example_simple() {
@ -17,7 +18,11 @@ func Example_simple() {
go sendFloats(ch)
// Compute the 50th, 90th, and 99th percentile.
q := quantile.NewTargeted(0.50, 0.90, 0.99)
q := quantile.NewTargeted(map[float64]float64{
0.50: 0.005,
0.90: 0.001,
0.99: 0.0001,
})
for v := range ch {
q.Insert(v)
}
@ -28,8 +33,8 @@ func Example_simple() {
fmt.Println("count:", q.Count())
// Output:
// perc50: 5
// perc90: 14
// perc99: 40
// perc90: 16
// perc99: 223
// count: 2388
}
@ -52,7 +57,7 @@ func Example_mergeMultipleStreams() {
// even if we do not plan to query them all here.
ch := make(chan quantile.Samples)
getDBQuerySamples(ch)
q := quantile.NewTargeted(0.90)
q := quantile.NewTargeted(map[float64]float64{0.90: 0.001})
for samples := range ch {
q.Merge(samples)
}
@ -67,7 +72,11 @@ func Example_window() {
go sendStreamValues(ch)
tick := time.NewTicker(1 * time.Minute)
q := quantile.NewTargeted(0.90, 0.95, 0.99)
q := quantile.NewTargeted(map[float64]float64{
0.90: 0.001,
0.95: 0.0005,
0.99: 0.0001,
})
for {
select {
case t := <-tick.C:

View File

@ -113,7 +113,8 @@ func TestHighBiasedQuery(t *testing.T) {
verifyHighPercsWithRelativeEpsilon(t, a, s)
}
func TestTargetedMerge(t *testing.T) {
// BrokenTestTargetedMerge is broken, see Merge doc comment.
func BrokenTestTargetedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewTargeted(Targets)
s2 := NewTargeted(Targets)
@ -123,7 +124,8 @@ func TestTargetedMerge(t *testing.T) {
verifyPercsWithAbsoluteEpsilon(t, a, s1)
}
func TestLowBiasedMerge(t *testing.T) {
// BrokenTestLowBiasedMerge is broken, see Merge doc comment.
func BrokenTestLowBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewLowBiased(RelativeEpsilon)
s2 := NewLowBiased(RelativeEpsilon)
@ -133,7 +135,8 @@ func TestLowBiasedMerge(t *testing.T) {
verifyLowPercsWithRelativeEpsilon(t, a, s2)
}
func TestHighBiasedMerge(t *testing.T) {
// BrokenTestHighBiasedMerge is broken, see Merge doc comment.
func BrokenTestHighBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewHighBiased(RelativeEpsilon)
s2 := NewHighBiased(RelativeEpsilon)

View File

@ -1 +0,0 @@
Imported at 75cd24fc2f2c from https://bitbucket.org/ww/goautoneg.

View File

@ -33,6 +33,14 @@ const (
// JobLabel is the label name indicating the job from which a timeseries
// was scraped.
JobLabel LabelName = "job"
// BucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
BucketLabel = "le"
// QuantileLabel is used for the label that defines the quantile in a
// summary.
QuantileLabel = "quantile"
)
// A LabelName is a key for a LabelSet or Metric. It has a value associated

View File

@ -22,6 +22,8 @@ import (
"strings"
)
var separator = []byte{0}
// A Metric is similar to a LabelSet, but the key difference is that a Metric is
// a singleton and refers to one and only one stream of samples.
type Metric map[LabelName]LabelValue
@ -64,23 +66,34 @@ func (m Metric) String() string {
// Fingerprint returns a Metric's Fingerprint.
func (m Metric) Fingerprint() Fingerprint {
labelLength := len(m)
labelNames := make([]string, 0, labelLength)
labelNames := make([]string, 0, len(m))
maxLength := 0
for labelName := range m {
for labelName, labelValue := range m {
labelNames = append(labelNames, string(labelName))
if len(labelName) > maxLength {
maxLength = len(labelName)
}
if len(labelValue) > maxLength {
maxLength = len(labelValue)
}
}
sort.Strings(labelNames)
summer := fnv.New64a()
buf := make([]byte, maxLength)
for _, labelName := range labelNames {
labelValue := m[LabelName(labelName)]
summer.Write([]byte(labelName))
summer.Write([]byte{0})
summer.Write([]byte(labelValue))
copy(buf, labelName)
summer.Write(buf[:len(labelName)])
summer.Write(separator)
copy(buf, labelValue)
summer.Write(buf[:len(labelValue)])
}
return Fingerprint(binary.LittleEndian.Uint64(summer.Sum(nil)))

View File

@ -38,6 +38,24 @@ func testMetric(t testing.TB) {
},
fingerprint: 1470933794305433534,
},
// The following two demonstrate a bug in fingerprinting. They
// should not have the same fingerprint with a sane
// fingerprinting function. See
// https://github.com/prometheus/client_golang/issues/74 .
{
input: Metric{
"a": "bb",
"b": "c",
},
fingerprint: 3734646176939799877,
},
{
input: Metric{
"a": "b",
"bb": "c",
},
fingerprint: 3734646176939799877,
},
}
for i, scenario := range scenarios {

View File

@ -14,18 +14,14 @@
package model
import (
"math"
"strconv"
native_time "time"
)
// TODO(julius): Should this use milliseconds/nanoseconds instead? This is
// mostly hidden from the user of these types when using the
// methods below, so it will be easy to change this later
// without requiring significant user code changes.
// Timestamp is the number of seconds since the epoch (1970-01-01 00:00 UTC)
// without leap seconds.
// Timestamp is the number of milliseconds since the epoch
// (1970-01-01 00:00 UTC) excluding leap seconds.
type Timestamp int64
const (
@ -36,6 +32,13 @@ const (
second = int64(native_time.Second / MinimumTick)
// The number of nanoseconds per minimum tick.
nanosPerTick = int64(MinimumTick / native_time.Nanosecond)
// Earliest is the earliest timestamp representable. Handy for
// initializing a high watermark.
Earliest = Timestamp(math.MinInt64)
// Latest is the latest timestamp representable. Handy for initializing
// a low watermark.
Latest = Timestamp(math.MaxInt64)
)
// Equal reports whether two timestamps represent the same instant.

View File

@ -29,9 +29,10 @@ var (
Namespace: "my_company",
Subsystem: "storage",
Name: "documents_total_size_bytes",
Help: "The total size of all documents in the storage."}})
Help: "The total size of all documents in the storage.",
})
)
func main() {
http.Handle("/metrics", prometheus.Handler())
@ -50,4 +51,3 @@ func init() {
# Documentation
[![GoDoc](https://godoc.org/github.com/prometheus/client_golang?status.png)](https://godoc.org/github.com/prometheus/client_golang)

View File

@ -129,3 +129,31 @@ func BenchmarkSummaryNoLabels(b *testing.B) {
m.Observe(3.1415)
}
}
func BenchmarkHistogramWithLabelValues(b *testing.B) {
m := NewHistogramVec(
HistogramOpts{
Name: "benchmark_histogram",
Help: "A histogram to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.WithLabelValues("eins", "zwei", "drei").Observe(3.1415)
}
}
func BenchmarkHistogramNoLabels(b *testing.B) {
m := NewHistogram(HistogramOpts{
Name: "benchmark_histogram",
Help: "A histogram to benchmark it.",
},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.Observe(3.1415)
}
}

View File

@ -74,7 +74,7 @@ func (c *counter) Add(v float64) {
// CounterVec is a Collector that bundles a set of Counters that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. number of http requests, partitioned by response code and
// (e.g. number of HTTP requests, partitioned by response code and
// method). Create instances with NewCounterVec.
//
// CounterVec embeds MetricVec. See there for a full list of methods with

View File

@ -13,7 +13,7 @@ import (
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
)
var (

View File

@ -16,7 +16,7 @@ package prometheus_test
import (
"runtime"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"

View File

@ -23,7 +23,7 @@ import (
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
"github.com/prometheus/client_golang/prometheus"
)
@ -129,7 +129,7 @@ func ExampleCounterVec() {
httpReqs := prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "http_requests_total",
Help: "How many HTTP requests processed, partitioned by status code and http method.",
Help: "How many HTTP requests processed, partitioned by status code and HTTP method.",
ConstLabels: prometheus.Labels{"env": *binaryVersion},
},
[]string{"code", "method"},
@ -200,7 +200,7 @@ func ExampleRegister() {
fmt.Println("taskCounter registered.")
}
// Don't forget to tell the HTTP server about the Prometheus handler.
// (In a real program, you still need to start the http server...)
// (In a real program, you still need to start the HTTP server...)
http.Handle("/metrics", prometheus.Handler())
// Now you can start workers and give every one of them a pointer to
@ -240,7 +240,7 @@ func ExampleRegister() {
// Prometheus will not allow you to ever export metrics with
// inconsistent help strings or label names. After unregistering, the
// unregistered metrics will cease to show up in the /metrics http
// unregistered metrics will cease to show up in the /metrics HTTP
// response, but the registry still remembers that those metrics had
// been exported before. For this example, we will now choose a
// different name. (In a real program, you would obviously not export
@ -452,3 +452,49 @@ func ExampleSummaryVec() {
// >
// ]
}
func ExampleHistogram() {
temps := prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "pond_temperature_celsius",
Help: "The temperature of the frog pond.", // Sorry, we can't measure how badly it smells.
Buckets: prometheus.LinearBuckets(20, 5, 5), // 5 buckets, each 5 centigrade wide.
})
// Simulate some observations.
for i := 0; i < 1000; i++ {
temps.Observe(30 + math.Floor(120*math.Sin(float64(i)*0.1))/10)
}
// Just for demonstration, let's check the state of the histogram by
// (ab)using its Write method (which is usually only used by Prometheus
// internally).
metric := &dto.Metric{}
temps.Write(metric)
fmt.Println(proto.MarshalTextString(metric))
// Output:
// histogram: <
// sample_count: 1000
// sample_sum: 29969.50000000001
// bucket: <
// cumulative_count: 192
// upper_bound: 20
// >
// bucket: <
// cumulative_count: 366
// upper_bound: 25
// >
// bucket: <
// cumulative_count: 501
// upper_bound: 30
// >
// bucket: <
// cumulative_count: 638
// upper_bound: 35
// >
// bucket: <
// cumulative_count: 816
// upper_bound: 40
// >
// >
}

View File

@ -0,0 +1,344 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"hash/fnv"
"math"
"sort"
"sync/atomic"
"github.com/golang/protobuf/proto"
"github.com/prometheus/client_golang/model"
dto "github.com/prometheus/client_model/go"
)
// A Histogram counts individual observations from an event or sample stream in
// configurable buckets. Similar to a summary, it also provides a sum of
// observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile function in the query language.
//
// Note that Histograms, in contrast to Summaries, can be aggregated with the
// Prometheus query language (see the documentation for detailed
// procedures). However, Histograms require the user to pre-define suitable
// buckets, and they are in general less accurate. The Observe method of a
// Histogram has a very low performance overhead in comparison with the Observe
// method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram.
Observe(float64)
}
var (
// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a
// network service. Most likely, however, you will be required to define
// buckets customized to your use case.
DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
errBucketLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in histograms", model.BucketLabel,
)
)
// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
if count < 1 {
panic("LinearBuckets needs a positive count")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start += width
}
return buckets
}
// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
// upper bound of 'start' and each following bucket's upper bound is 'factor'
// times the previous bucket's upper bound. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
if count < 1 {
panic("ExponentialBuckets needs a positive count")
}
if start <= 0 {
panic("ExponentialBuckets needs a positive start value")
}
if factor <= 1 {
panic("ExponentialBuckets needs a factor greater than 1")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start *= factor
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name and Help to a non-empty string. All other fields are
// optional and can safely be left at their zero value.
type HistogramOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Histogram (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Histogram must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Histogram. Mandatory!
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this
// Histogram. Histograms with the same fully-qualified name must have the
// same label names in their ConstLabels.
//
// Note that in most cases, labels have a value that varies during the
// lifetime of a process. Those labels are usually managed with a
// HistogramVec. ConstLabels serve only special purposes. One is for the
// special case where the value of a label does not change during the
// lifetime of a process, e.g. if the revision of the running binary is
// put into a label. Another, more advanced purpose is if more than one
// Collector needs to collect Histograms with the same fully-qualified
// name. In that case, those Summaries must differ in the values of
// their ConstLabels. See the Collector examples.
//
// If the value of a label never changes (not even between binaries),
// that label most likely should not be a label at all (but part of the
// metric name).
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
// element in the slice is the upper inclusive bound of a bucket. The
// values must be sorted in strictly increasing order. There is no need
// to add a highest bucket with +Inf bound, it will be added
// implicitly. The default value is DefObjectives.
Buckets []float64
}
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
if len(desc.variableLabels) != len(labelValues) {
panic(errInconsistentCardinality)
}
for _, n := range desc.variableLabels {
if n == model.BucketLabel {
panic(errBucketLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == model.BucketLabel {
panic(errBucketLabelNotAllowed)
}
}
if len(opts.Buckets) == 0 {
opts.Buckets = DefBuckets
}
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: makeLabelPairs(desc, labelValues),
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
if upperBound >= h.upperBounds[i+1] {
panic(fmt.Errorf(
"histogram buckets must be in increasing order: %f >= %f",
upperBound, h.upperBounds[i+1],
))
}
} else {
if math.IsInf(upperBound, +1) {
// The +Inf bucket is implicit. Remove it here.
h.upperBounds = h.upperBounds[:i]
}
}
}
// Finally we know the final length of h.upperBounds and can make counts.
h.counts = make([]uint64, len(h.upperBounds))
h.Init(h) // Init self-collection.
return h
}
type histogram struct {
SelfCollector
// Note that there is no mutex required.
desc *Desc
upperBounds []float64
counts []uint64
labelPairs []*dto.LabelPair
sumBits uint64 // The bits of the float64 representing the sum of all observations.
count uint64
}
func (h *histogram) Desc() *Desc {
return h.desc
}
func (h *histogram) Observe(v float64) {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
i := sort.SearchFloat64s(h.upperBounds, v)
if i < len(h.counts) {
atomic.AddUint64(&h.counts[i], 1)
}
atomic.AddUint64(&h.count, 1)
for {
oldBits := atomic.LoadUint64(&h.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&h.sumBits, oldBits, newBits) {
break
}
}
}
func (h *histogram) Write(out *dto.Metric) error {
his := &dto.Histogram{}
buckets := make([]*dto.Bucket, len(h.upperBounds))
his.SampleSum = proto.Float64(math.Float64frombits(atomic.LoadUint64(&h.sumBits)))
his.SampleCount = proto.Uint64(atomic.LoadUint64(&h.count))
var count uint64
for i, upperBound := range h.upperBounds {
count += atomic.LoadUint64(&h.counts[i])
buckets[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(upperBound),
}
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
return nil
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
MetricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names. At least one label name must be
// provided.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &HistogramVec{
MetricVec: MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newHistogram(desc, opts, lvs...)
},
},
}
}
// GetMetricWithLabelValues replaces the method of the same name in
// MetricVec. The difference is that this method returns a Histogram and not a
// Metric so that no type conversion is required.
func (m *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Histogram, error) {
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Histogram), err
}
return nil, err
}
// GetMetricWith replaces the method of the same name in MetricVec. The
// difference is that this method returns a Histogram and not a Metric so that no
// type conversion is required.
func (m *HistogramVec) GetMetricWith(labels Labels) (Histogram, error) {
metric, err := m.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Histogram), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (m *HistogramVec) WithLabelValues(lvs ...string) Histogram {
return m.MetricVec.WithLabelValues(lvs...).(Histogram)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (m *HistogramVec) With(labels Labels) Histogram {
return m.MetricVec.With(labels).(Histogram)
}

View File

@ -0,0 +1,318 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"math"
"math/rand"
"reflect"
"sort"
"sync"
"testing"
"testing/quick"
dto "github.com/prometheus/client_model/go"
)
func benchmarkHistogramObserve(w int, b *testing.B) {
b.StopTimer()
wg := new(sync.WaitGroup)
wg.Add(w)
g := new(sync.WaitGroup)
g.Add(1)
s := NewHistogram(HistogramOpts{})
for i := 0; i < w; i++ {
go func() {
g.Wait()
for i := 0; i < b.N; i++ {
s.Observe(float64(i))
}
wg.Done()
}()
}
b.StartTimer()
g.Done()
wg.Wait()
}
func BenchmarkHistogramObserve1(b *testing.B) {
benchmarkHistogramObserve(1, b)
}
func BenchmarkHistogramObserve2(b *testing.B) {
benchmarkHistogramObserve(2, b)
}
func BenchmarkHistogramObserve4(b *testing.B) {
benchmarkHistogramObserve(4, b)
}
func BenchmarkHistogramObserve8(b *testing.B) {
benchmarkHistogramObserve(8, b)
}
func benchmarkHistogramWrite(w int, b *testing.B) {
b.StopTimer()
wg := new(sync.WaitGroup)
wg.Add(w)
g := new(sync.WaitGroup)
g.Add(1)
s := NewHistogram(HistogramOpts{})
for i := 0; i < 1000000; i++ {
s.Observe(float64(i))
}
for j := 0; j < w; j++ {
outs := make([]dto.Metric, b.N)
go func(o []dto.Metric) {
g.Wait()
for i := 0; i < b.N; i++ {
s.Write(&o[i])
}
wg.Done()
}(outs)
}
b.StartTimer()
g.Done()
wg.Wait()
}
func BenchmarkHistogramWrite1(b *testing.B) {
benchmarkHistogramWrite(1, b)
}
func BenchmarkHistogramWrite2(b *testing.B) {
benchmarkHistogramWrite(2, b)
}
func BenchmarkHistogramWrite4(b *testing.B) {
benchmarkHistogramWrite(4, b)
}
func BenchmarkHistogramWrite8(b *testing.B) {
benchmarkHistogramWrite(8, b)
}
// Intentionally adding +Inf here to test if that case is handled correctly.
// Also, getCumulativeCounts depends on it.
var testBuckets = []float64{-2, -1, -0.5, 0, 0.5, 1, 2, math.Inf(+1)}
func TestHistogramConcurrency(t *testing.T) {
rand.Seed(42)
it := func(n uint32) bool {
mutations := int(n%1e4 + 1e4)
concLevel := int(n%5 + 1)
total := mutations * concLevel
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
sum := NewHistogram(HistogramOpts{
Name: "test_histogram",
Help: "helpless",
Buckets: testBuckets,
})
allVars := make([]float64, total)
var sampleSum float64
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
for j := 0; j < mutations; j++ {
v := rand.NormFloat64()
vals[j] = v
allVars[i*mutations+j] = v
sampleSum += v
}
go func(vals []float64) {
start.Wait()
for _, v := range vals {
sum.Observe(v)
}
end.Done()
}(vals)
}
sort.Float64s(allVars)
start.Done()
end.Wait()
m := &dto.Metric{}
sum.Write(m)
if got, want := int(*m.Histogram.SampleCount), total; got != want {
t.Errorf("got sample count %d, want %d", got, want)
}
if got, want := *m.Histogram.SampleSum, sampleSum; math.Abs((got-want)/want) > 0.001 {
t.Errorf("got sample sum %f, want %f", got, want)
}
wantCounts := getCumulativeCounts(allVars)
if got, want := len(m.Histogram.Bucket), len(testBuckets)-1; got != want {
t.Errorf("got %d buckets in protobuf, want %d", got, want)
}
for i, wantBound := range testBuckets {
if i == len(testBuckets)-1 {
break // No +Inf bucket in protobuf.
}
if gotBound := *m.Histogram.Bucket[i].UpperBound; gotBound != wantBound {
t.Errorf("got bound %f, want %f", gotBound, wantBound)
}
if gotCount, wantCount := *m.Histogram.Bucket[i].CumulativeCount, wantCounts[i]; gotCount != wantCount {
t.Errorf("got count %d, want %d", gotCount, wantCount)
}
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Error(err)
}
}
func TestHistogramVecConcurrency(t *testing.T) {
rand.Seed(42)
objectives := make([]float64, 0, len(DefObjectives))
for qu := range DefObjectives {
objectives = append(objectives, qu)
}
sort.Float64s(objectives)
it := func(n uint32) bool {
mutations := int(n%1e4 + 1e4)
concLevel := int(n%7 + 1)
vecLength := int(n%3 + 1)
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
his := NewHistogramVec(
HistogramOpts{
Name: "test_histogram",
Help: "helpless",
Buckets: []float64{-2, -1, -0.5, 0, 0.5, 1, 2, math.Inf(+1)},
},
[]string{"label"},
)
allVars := make([][]float64, vecLength)
sampleSums := make([]float64, vecLength)
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
picks := make([]int, mutations)
for j := 0; j < mutations; j++ {
v := rand.NormFloat64()
vals[j] = v
pick := rand.Intn(vecLength)
picks[j] = pick
allVars[pick] = append(allVars[pick], v)
sampleSums[pick] += v
}
go func(vals []float64) {
start.Wait()
for i, v := range vals {
his.WithLabelValues(string('A' + picks[i])).Observe(v)
}
end.Done()
}(vals)
}
for _, vars := range allVars {
sort.Float64s(vars)
}
start.Done()
end.Wait()
for i := 0; i < vecLength; i++ {
m := &dto.Metric{}
s := his.WithLabelValues(string('A' + i))
s.Write(m)
if got, want := len(m.Histogram.Bucket), len(testBuckets)-1; got != want {
t.Errorf("got %d buckets in protobuf, want %d", got, want)
}
if got, want := int(*m.Histogram.SampleCount), len(allVars[i]); got != want {
t.Errorf("got sample count %d, want %d", got, want)
}
if got, want := *m.Histogram.SampleSum, sampleSums[i]; math.Abs((got-want)/want) > 0.001 {
t.Errorf("got sample sum %f, want %f", got, want)
}
wantCounts := getCumulativeCounts(allVars[i])
for j, wantBound := range testBuckets {
if j == len(testBuckets)-1 {
break // No +Inf bucket in protobuf.
}
if gotBound := *m.Histogram.Bucket[j].UpperBound; gotBound != wantBound {
t.Errorf("got bound %f, want %f", gotBound, wantBound)
}
if gotCount, wantCount := *m.Histogram.Bucket[j].CumulativeCount, wantCounts[j]; gotCount != wantCount {
t.Errorf("got count %d, want %d", gotCount, wantCount)
}
}
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Error(err)
}
}
func getCumulativeCounts(vars []float64) []uint64 {
counts := make([]uint64, len(testBuckets))
for _, v := range vars {
for i := len(testBuckets) - 1; i >= 0; i-- {
if v > testBuckets[i] {
break
}
counts[i]++
}
}
return counts
}
func TestBuckets(t *testing.T) {
got := LinearBuckets(-15, 5, 6)
want := []float64{-15, -10, -5, 0, 5, 10}
if !reflect.DeepEqual(got, want) {
t.Errorf("linear buckets: got %v, want %v", got, want)
}
got = ExponentialBuckets(100, 1.2, 3)
want = []float64{100, 120, 144}
if !reflect.DeepEqual(got, want) {
t.Errorf("linear buckets: got %v, want %v", got, want)
}
}

View File

@ -47,7 +47,7 @@ func nowSeries(t ...time.Time) nower {
}
// InstrumentHandler wraps the given HTTP handler for instrumentation. It
// registers four metric collectors (if not already done) and reports http
// registers four metric collectors (if not already done) and reports HTTP
// metrics to the (newly or already) registered collectors: http_requests_total
// (CounterVec), http_request_duration_microseconds (Summary),
// http_request_size_bytes (Summary), http_response_size_bytes (Summary). Each

View File

@ -24,26 +24,20 @@ func processCollectSupported() bool {
return false
}
// TODO(ts): Bring back error reporting by reverting 7faf9e7 as soon as the
// client allows users to configure the error behavior.
func (c *processCollector) processCollect(ch chan<- Metric) {
pid, err := c.pidFn()
if err != nil {
c.reportCollectErrors(ch, err)
return
}
p, err := procfs.NewProc(pid)
if err != nil {
c.reportCollectErrors(ch, err)
return
}
if stat, err := p.NewStat(); err != nil {
// Report collect errors for metrics depending on stat.
ch <- NewInvalidMetric(c.vsize.Desc(), err)
ch <- NewInvalidMetric(c.rss.Desc(), err)
ch <- NewInvalidMetric(c.startTime.Desc(), err)
ch <- NewInvalidMetric(c.cpuTotal.Desc(), err)
} else {
if stat, err := p.NewStat(); err == nil {
c.cpuTotal.Set(stat.CPUTime())
ch <- c.cpuTotal
c.vsize.Set(float64(stat.VirtualMemory()))
@ -51,34 +45,19 @@ func (c *processCollector) processCollect(ch chan<- Metric) {
c.rss.Set(float64(stat.ResidentMemory()))
ch <- c.rss
if startTime, err := stat.StartTime(); err != nil {
ch <- NewInvalidMetric(c.startTime.Desc(), err)
} else {
if startTime, err := stat.StartTime(); err == nil {
c.startTime.Set(startTime)
ch <- c.startTime
}
}
if fds, err := p.FileDescriptorsLen(); err != nil {
ch <- NewInvalidMetric(c.openFDs.Desc(), err)
} else {
if fds, err := p.FileDescriptorsLen(); err == nil {
c.openFDs.Set(float64(fds))
ch <- c.openFDs
}
if limits, err := p.NewLimits(); err != nil {
ch <- NewInvalidMetric(c.maxFDs.Desc(), err)
} else {
if limits, err := p.NewLimits(); err == nil {
c.maxFDs.Set(float64(limits.OpenFiles))
ch <- c.maxFDs
}
}
func (c *processCollector) reportCollectErrors(ch chan<- Metric, err error) {
ch <- NewInvalidMetric(c.cpuTotal.Desc(), err)
ch <- NewInvalidMetric(c.openFDs.Desc(), err)
ch <- NewInvalidMetric(c.maxFDs.Desc(), err)
ch <- NewInvalidMetric(c.vsize.Desc(), err)
ch <- NewInvalidMetric(c.rss.Desc(), err)
ch <- NewInvalidMetric(c.startTime.Desc(), err)
}

View File

@ -33,11 +33,11 @@ import (
"strings"
"sync"
"bitbucket.org/ww/goautoneg"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/prometheus/client_golang/_vendor/goautoneg"
"github.com/prometheus/client_golang/model"
"github.com/prometheus/client_golang/text"
)
@ -171,7 +171,7 @@ func SetMetricFamilyInjectionHook(hook func() []*dto.MetricFamily) {
}
// PanicOnCollectError sets the behavior whether a panic is caused upon an error
// while metrics are collected and served to the http endpoint. By default, an
// while metrics are collected and served to the HTTP endpoint. By default, an
// internal server error (status code 500) is served with an error message.
func PanicOnCollectError(b bool) {
defRegistry.panicOnCollectError = b
@ -464,6 +464,8 @@ func (r *registry) writePB(w io.Writer, writeEncoded encoder) (int, error) {
metricFamily.Type = dto.MetricType_SUMMARY.Enum()
case dtoMetric.Untyped != nil:
metricFamily.Type = dto.MetricType_UNTYPED.Enum()
case dtoMetric.Histogram != nil:
metricFamily.Type = dto.MetricType_HISTOGRAM.Enum()
default:
return 0, fmt.Errorf("empty metric collected: %s", dtoMetric)
}

View File

@ -25,7 +25,7 @@ import (
"net/http"
"testing"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)

View File

@ -20,11 +20,12 @@ import (
"sync"
"time"
"code.google.com/p/goprotobuf/proto"
"github.com/beorn7/perks/quantile"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/_vendor/perks/quantile"
"github.com/prometheus/client_golang/model"
)
// A Summary captures individual observations from an event or sample stream and
@ -35,6 +36,12 @@ import (
// Summary provides the median, the 90th and the 99th percentile of the latency
// as rank estimations.
//
// Note that the rank estimations cannot be aggregated in a meaningful way with
// the Prometheus query language (i.e. you cannot average or add them). If you
// need aggregatable quantiles (e.g. you want the 99th percentile latency of all
// queries served across all instances of a service), consider the Histogram
// metric type. See the Prometheus documentation for more details.
//
// To create Summary instances, use NewSummary.
type Summary interface {
Metric
@ -44,9 +51,13 @@ type Summary interface {
Observe(float64)
}
// DefObjectives are the default Summary quantile values.
var (
// DefObjectives are the default Summary quantile values.
DefObjectives = map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}
errQuantileLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in summaries", model.QuantileLabel,
)
)
// Default values for SummaryOpts.
@ -110,7 +121,10 @@ type SummaryOpts struct {
// AgeBuckets is the number of buckets used to exclude observations that
// are older than MaxAge from the summary. A higher number has a
// resource penalty, so only increase it if the higher resolution is
// really required. The default value is DefAgeBuckets.
// really required. For very high observation rates, you might want to
// reduce the number of age buckets. With only one age bucket, you will
// effectively see a complete reset of the summary each time MaxAge has
// passed. The default value is DefAgeBuckets.
AgeBuckets uint32
// BufCap defines the default sample stream buffer size. The default
@ -119,10 +133,6 @@ type SummaryOpts struct {
// is the internal buffer size of the underlying package
// "github.com/bmizerany/perks/quantile").
BufCap uint32
// Epsilon is the error epsilon for the quantile rank estimate. Must be
// positive. The default is DefEpsilon.
Epsilon float64
}
// TODO: Great fuck-up with the sliding-window decay algorithm... The Merge
@ -158,6 +168,17 @@ func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
panic(errInconsistentCardinality)
}
for _, n := range desc.variableLabels {
if n == model.QuantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == model.QuantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
if len(opts.Objectives) == 0 {
opts.Objectives = DefObjectives
}
@ -358,7 +379,7 @@ func (s quantSort) Less(i, j int) bool {
// SummaryVec is a Collector that bundles a set of Summaries that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. http request latencies, partitioned by status code and method). Create
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewSummaryVec.
type SummaryVec struct {
MetricVec
@ -411,14 +432,14 @@ func (m *SummaryVec) GetMetricWith(labels Labels) (Summary, error) {
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (m *SummaryVec) WithLabelValues(lvs ...string) Summary {
return m.MetricVec.WithLabelValues(lvs...).(Summary)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
// myVec.With(Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (m *SummaryVec) With(labels Labels) Summary {
return m.MetricVec.With(labels).(Summary)
}

View File

@ -120,6 +120,10 @@ func BenchmarkSummaryWrite8(b *testing.B) {
}
func TestSummaryConcurrency(t *testing.T) {
if testing.Short() {
t.Skip("Skipping test in short mode.")
}
rand.Seed(42)
it := func(n uint32) bool {
@ -195,6 +199,10 @@ func TestSummaryConcurrency(t *testing.T) {
}
func TestSummaryVecConcurrency(t *testing.T) {
if testing.Short() {
t.Skip("Skipping test in short mode.")
}
rand.Seed(42)
objectives := make([]float64, 0, len(DefObjectives))

View File

@ -22,7 +22,7 @@ import (
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
)
// ValueType is an enumeration of metric types that represent a simple value.

View File

@ -24,8 +24,10 @@ import (
"bytes"
"fmt"
"io"
"math"
"strings"
"github.com/prometheus/client_golang/model"
dto "github.com/prometheus/client_model/go"
)
@ -116,7 +118,7 @@ func MetricFamilyToText(out io.Writer, in *dto.MetricFamily) (int, error) {
for _, q := range metric.Summary.Quantile {
n, err = writeSample(
name, metric,
"quantile", fmt.Sprint(q.GetQuantile()),
model.QuantileLabel, fmt.Sprint(q.GetQuantile()),
q.GetValue(),
out,
)
@ -139,6 +141,54 @@ func MetricFamilyToText(out io.Writer, in *dto.MetricFamily) (int, error) {
float64(metric.Summary.GetSampleCount()),
out,
)
case dto.MetricType_HISTOGRAM:
if metric.Histogram == nil {
return written, fmt.Errorf(
"expected summary in metric %s", metric,
)
}
infSeen := false
for _, q := range metric.Histogram.Bucket {
n, err = writeSample(
name+"_bucket", metric,
model.BucketLabel, fmt.Sprint(q.GetUpperBound()),
float64(q.GetCumulativeCount()),
out,
)
written += n
if err != nil {
return written, err
}
if math.IsInf(q.GetUpperBound(), +1) {
infSeen = true
}
}
if !infSeen {
n, err = writeSample(
name+"_bucket", metric,
model.BucketLabel, "+Inf",
float64(metric.Histogram.GetSampleCount()),
out,
)
if err != nil {
return written, err
}
written += n
}
n, err = writeSample(
name+"_sum", metric, "", "",
metric.Histogram.GetSampleSum(),
out,
)
if err != nil {
return written, err
}
written += n
n, err = writeSample(
name+"_count", metric, "", "",
float64(metric.Histogram.GetSampleCount()),
out,
)
default:
return written, fmt.Errorf(
"unexpected type in metric %s", metric,

View File

@ -19,7 +19,7 @@ import (
"strings"
"testing"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
@ -219,6 +219,98 @@ summary_name{name_1="value 1",name_2="value 2",quantile="0.9"} 2
summary_name{name_1="value 1",name_2="value 2",quantile="0.99"} 3
summary_name_sum{name_1="value 1",name_2="value 2"} 2010.1971
summary_name_count{name_1="value 1",name_2="value 2"} 4711
`,
},
// 4: Histogram
{
in: &dto.MetricFamily{
Name: proto.String("request_duration_microseconds"),
Help: proto.String("The response latency."),
Type: dto.MetricType_HISTOGRAM.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Histogram: &dto.Histogram{
SampleCount: proto.Uint64(2693),
SampleSum: proto.Float64(1756047.3),
Bucket: []*dto.Bucket{
&dto.Bucket{
UpperBound: proto.Float64(100),
CumulativeCount: proto.Uint64(123),
},
&dto.Bucket{
UpperBound: proto.Float64(120),
CumulativeCount: proto.Uint64(412),
},
&dto.Bucket{
UpperBound: proto.Float64(144),
CumulativeCount: proto.Uint64(592),
},
&dto.Bucket{
UpperBound: proto.Float64(172.8),
CumulativeCount: proto.Uint64(1524),
},
&dto.Bucket{
UpperBound: proto.Float64(math.Inf(+1)),
CumulativeCount: proto.Uint64(2693),
},
},
},
},
},
},
out: `# HELP request_duration_microseconds The response latency.
# TYPE request_duration_microseconds histogram
request_duration_microseconds_bucket{le="100"} 123
request_duration_microseconds_bucket{le="120"} 412
request_duration_microseconds_bucket{le="144"} 592
request_duration_microseconds_bucket{le="172.8"} 1524
request_duration_microseconds_bucket{le="+Inf"} 2693
request_duration_microseconds_sum 1.7560473e+06
request_duration_microseconds_count 2693
`,
},
// 5: Histogram with missing +Inf bucket.
{
in: &dto.MetricFamily{
Name: proto.String("request_duration_microseconds"),
Help: proto.String("The response latency."),
Type: dto.MetricType_HISTOGRAM.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Histogram: &dto.Histogram{
SampleCount: proto.Uint64(2693),
SampleSum: proto.Float64(1756047.3),
Bucket: []*dto.Bucket{
&dto.Bucket{
UpperBound: proto.Float64(100),
CumulativeCount: proto.Uint64(123),
},
&dto.Bucket{
UpperBound: proto.Float64(120),
CumulativeCount: proto.Uint64(412),
},
&dto.Bucket{
UpperBound: proto.Float64(144),
CumulativeCount: proto.Uint64(592),
},
&dto.Bucket{
UpperBound: proto.Float64(172.8),
CumulativeCount: proto.Uint64(1524),
},
},
},
},
},
},
out: `# HELP request_duration_microseconds The response latency.
# TYPE request_duration_microseconds histogram
request_duration_microseconds_bucket{le="100"} 123
request_duration_microseconds_bucket{le="120"} 412
request_duration_microseconds_bucket{le="144"} 592
request_duration_microseconds_bucket{le="172.8"} 1524
request_duration_microseconds_bucket{le="+Inf"} 2693
request_duration_microseconds_sum 1.7560473e+06
request_duration_microseconds_count 2693
`,
},
}

View File

@ -24,7 +24,7 @@ import (
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
"github.com/prometheus/client_golang/model"
)
@ -59,14 +59,19 @@ type Parser struct {
currentMetric *dto.Metric
currentLabelPair *dto.LabelPair
// The remaining member variables are only used for summaries.
// The remaining member variables are only used for summaries/histograms.
currentLabels map[string]string // All labels including '__name__' but excluding 'quantile'/'le'
// Summary specific.
summaries map[uint64]*dto.Metric // Key is created with LabelsToSignature.
currentLabels map[string]string // All labels including '__name__' but excluding 'quantile'.
currentQuantile float64
// Histogram specific.
histograms map[uint64]*dto.Metric // Key is created with LabelsToSignature.
currentBucket float64
// These tell us if the currently processed line ends on '_count' or
// '_sum' respectively and belong to a summary, representing the sample
// count and sum of that summary.
currentIsSummaryCount, currentIsSummarySum bool
// '_sum' respectively and belong to a summary/histogram, representing the sample
// count and sum of that summary/histogram.
currentIsSummaryCount, currentIsSummarySum bool
currentIsHistogramCount, currentIsHistogramSum bool
}
// TextToMetricFamilies reads 'in' as the simple and flat text-based exchange
@ -111,7 +116,11 @@ func (p *Parser) reset(in io.Reader) {
if p.summaries == nil || len(p.summaries) > 0 {
p.summaries = map[uint64]*dto.Metric{}
}
if p.histograms == nil || len(p.histograms) > 0 {
p.histograms = map[uint64]*dto.Metric{}
}
p.currentQuantile = math.NaN()
p.currentBucket = math.NaN()
}
// startOfLine represents the state where the next byte read from p.buf is the
@ -224,13 +233,14 @@ func (p *Parser) readingMetricName() stateFn {
// p.currentByte) is either the first byte of the label set (i.e. a '{'), or the
// first byte of the value (otherwise).
func (p *Parser) readingLabels() stateFn {
// Alas, summaries are really special... We have to reset the
// currentLabels map and the currentQuantile before starting to
// Summaries/histograms are special. We have to reset the
// currentLabels map, currentQuantile and currentBucket before starting to
// read labels.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if p.currentMF.GetType() == dto.MetricType_SUMMARY || p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
p.currentLabels = map[string]string{}
p.currentLabels[string(model.MetricNameLabel)] = p.currentMF.GetName()
p.currentQuantile = math.NaN()
p.currentBucket = math.NaN()
}
if p.currentByte != '{' {
return p.readingValue
@ -262,10 +272,10 @@ func (p *Parser) startLabelName() stateFn {
p.parseError(fmt.Sprintf("label name %q is reserved", model.MetricNameLabel))
return nil
}
// Once more, special summary treatment... Don't add 'quantile'
// Special summary/histogram treatment. Don't add 'quantile' and 'le'
// labels to 'real' labels.
if p.currentMF.GetType() != dto.MetricType_SUMMARY ||
p.currentLabelPair.GetName() != "quantile" {
if !(p.currentMF.GetType() == dto.MetricType_SUMMARY && p.currentLabelPair.GetName() == model.QuantileLabel) &&
!(p.currentMF.GetType() == dto.MetricType_HISTOGRAM && p.currentLabelPair.GetName() == model.BucketLabel) {
p.currentMetric.Label = append(p.currentMetric.Label, p.currentLabelPair)
}
if p.skipBlankTabIfCurrentBlankTab(); p.err != nil {
@ -292,14 +302,26 @@ func (p *Parser) startLabelValue() stateFn {
return nil
}
p.currentLabelPair.Value = proto.String(p.currentToken.String())
// Once more, special treatment of summaries:
// Special treatment of summaries:
// - Quantile labels are special, will result in dto.Quantile later.
// - Other labels have to be added to currentLabels for signature calculation.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if p.currentLabelPair.GetName() == "quantile" {
if p.currentLabelPair.GetName() == model.QuantileLabel {
if p.currentQuantile, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value for quantile label, got %q", p.currentLabelPair.GetValue()))
p.parseError(fmt.Sprintf("expected float as value for 'quantile' label, got %q", p.currentLabelPair.GetValue()))
return nil
}
} else {
p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue()
}
}
// Similar special treatment of histograms.
if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
if p.currentLabelPair.GetName() == model.BucketLabel {
if p.currentBucket, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value for 'le' label, got %q", p.currentLabelPair.GetValue()))
return nil
}
} else {
@ -328,7 +350,7 @@ func (p *Parser) startLabelValue() stateFn {
// p.currentByte) is the first byte of the sample value (i.e. a float).
func (p *Parser) readingValue() stateFn {
// When we are here, we have read all the labels, so for the
// infamous special case of a summary, we can finally find out
// special case of a summary/histogram, we can finally find out
// if the metric already exists.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
signature := model.LabelsToSignature(p.currentLabels)
@ -338,6 +360,14 @@ func (p *Parser) readingValue() stateFn {
p.summaries[signature] = p.currentMetric
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
} else if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
signature := model.LabelsToSignature(p.currentLabels)
if histogram := p.histograms[signature]; histogram != nil {
p.currentMetric = histogram
} else {
p.histograms[signature] = p.currentMetric
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
} else {
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
@ -376,6 +406,25 @@ func (p *Parser) readingValue() stateFn {
},
)
}
case dto.MetricType_HISTOGRAM:
// *sigh*
if p.currentMetric.Histogram == nil {
p.currentMetric.Histogram = &dto.Histogram{}
}
switch {
case p.currentIsHistogramCount:
p.currentMetric.Histogram.SampleCount = proto.Uint64(uint64(value))
case p.currentIsHistogramSum:
p.currentMetric.Histogram.SampleSum = proto.Float64(value)
case !math.IsNaN(p.currentBucket):
p.currentMetric.Histogram.Bucket = append(
p.currentMetric.Histogram.Bucket,
&dto.Bucket{
UpperBound: proto.Float64(p.currentBucket),
CumulativeCount: proto.Uint64(uint64(value)),
},
)
}
default:
p.err = fmt.Errorf("unexpected type for metric name %q", p.currentMF.GetName())
}
@ -598,11 +647,13 @@ func (p *Parser) readTokenAsLabelValue() {
func (p *Parser) setOrCreateCurrentMF() {
p.currentIsSummaryCount = false
p.currentIsSummarySum = false
p.currentIsHistogramCount = false
p.currentIsHistogramSum = false
name := p.currentToken.String()
if p.currentMF = p.metricFamiliesByName[name]; p.currentMF != nil {
return
}
// Try out if this is a _sum or _count for a summary.
// Try out if this is a _sum or _count for a summary/histogram.
summaryName := summaryMetricName(name)
if p.currentMF = p.metricFamiliesByName[summaryName]; p.currentMF != nil {
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
@ -615,6 +666,18 @@ func (p *Parser) setOrCreateCurrentMF() {
return
}
}
histogramName := histogramMetricName(name)
if p.currentMF = p.metricFamiliesByName[histogramName]; p.currentMF != nil {
if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
if isCount(name) {
p.currentIsHistogramCount = true
}
if isSum(name) {
p.currentIsHistogramSum = true
}
return
}
}
p.currentMF = &dto.MetricFamily{Name: proto.String(name)}
p.metricFamiliesByName[name] = p.currentMF
}
@ -647,6 +710,10 @@ func isSum(name string) bool {
return len(name) > 4 && name[len(name)-4:] == "_sum"
}
func isBucket(name string) bool {
return len(name) > 7 && name[len(name)-7:] == "_bucket"
}
func summaryMetricName(name string) string {
switch {
case isCount(name):
@ -657,3 +724,16 @@ func summaryMetricName(name string) string {
return name
}
}
func histogramMetricName(name string) string {
switch {
case isCount(name):
return name[:len(name)-6]
case isSum(name):
return name[:len(name)-4]
case isBucket(name):
return name[:len(name)-7]
default:
return name
}
}

View File

@ -18,7 +18,7 @@ import (
"strings"
"testing"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
@ -335,6 +335,57 @@ my_summary{n1="val3", quantile="0.2"} 4711
},
},
},
// 4: The histogram.
{
in: `
# HELP request_duration_microseconds The response latency.
# TYPE request_duration_microseconds histogram
request_duration_microseconds_bucket{le="100"} 123
request_duration_microseconds_bucket{le="120"} 412
request_duration_microseconds_bucket{le="144"} 592
request_duration_microseconds_bucket{le="172.8"} 1524
request_duration_microseconds_bucket{le="+Inf"} 2693
request_duration_microseconds_sum 1.7560473e+06
request_duration_microseconds_count 2693
`,
out: []*dto.MetricFamily{
{
Name: proto.String("request_duration_microseconds"),
Help: proto.String("The response latency."),
Type: dto.MetricType_HISTOGRAM.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Histogram: &dto.Histogram{
SampleCount: proto.Uint64(2693),
SampleSum: proto.Float64(1756047.3),
Bucket: []*dto.Bucket{
&dto.Bucket{
UpperBound: proto.Float64(100),
CumulativeCount: proto.Uint64(123),
},
&dto.Bucket{
UpperBound: proto.Float64(120),
CumulativeCount: proto.Uint64(412),
},
&dto.Bucket{
UpperBound: proto.Float64(144),
CumulativeCount: proto.Uint64(592),
},
&dto.Bucket{
UpperBound: proto.Float64(172.8),
CumulativeCount: proto.Uint64(1524),
},
&dto.Bucket{
UpperBound: proto.Float64(math.Inf(+1)),
CumulativeCount: proto.Uint64(2693),
},
},
},
},
},
},
},
},
}
for i, scenario := range scenarios {
@ -427,7 +478,7 @@ line"} 3.14
# TYPE metric summary
metric{quantile="bla"} 3.14
`,
err: "text format parsing error in line 3: expected float as value for quantile label",
err: "text format parsing error in line 3: expected float as value for 'quantile' label",
},
// 8:
{
@ -500,6 +551,14 @@ metric 4.12
in: `{label="bla"} 3.14 2`,
err: "text format parsing error in line 1: invalid metric name",
},
// 18:
{
in: `
# TYPE metric histogram
metric_bucket{le="bla"} 3.14
`,
err: "text format parsing error in line 3: expected float as value for 'le' label",
},
}
for i, scenario := range scenarios {

View File

@ -17,7 +17,7 @@ import (
"fmt"
"io"
"code.google.com/p/goprotobuf/proto"
"github.com/golang/protobuf/proto"
"github.com/matttproud/golang_protobuf_extensions/ext"
dto "github.com/prometheus/client_model/go"

View File

@ -15,27 +15,28 @@ It has these top-level messages:
Quantile
Summary
Untyped
Histogram
Bucket
Metric
MetricFamily
*/
package io_prometheus_client
import proto "code.google.com/p/goprotobuf/proto"
import json "encoding/json"
import proto "github.com/golang/protobuf/proto"
import math "math"
// Reference proto, json, and math imports to suppress error if they are not otherwise used.
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = &json.SyntaxError{}
var _ = math.Inf
type MetricType int32
const (
MetricType_COUNTER MetricType = 0
MetricType_GAUGE MetricType = 1
MetricType_SUMMARY MetricType = 2
MetricType_UNTYPED MetricType = 3
MetricType_COUNTER MetricType = 0
MetricType_GAUGE MetricType = 1
MetricType_SUMMARY MetricType = 2
MetricType_UNTYPED MetricType = 3
MetricType_HISTOGRAM MetricType = 4
)
var MetricType_name = map[int32]string{
@ -43,12 +44,14 @@ var MetricType_name = map[int32]string{
1: "GAUGE",
2: "SUMMARY",
3: "UNTYPED",
4: "HISTOGRAM",
}
var MetricType_value = map[string]int32{
"COUNTER": 0,
"GAUGE": 1,
"SUMMARY": 2,
"UNTYPED": 3,
"COUNTER": 0,
"GAUGE": 1,
"SUMMARY": 2,
"UNTYPED": 3,
"HISTOGRAM": 4,
}
func (x MetricType) Enum() *MetricType {
@ -196,12 +199,69 @@ func (m *Untyped) GetValue() float64 {
return 0
}
type Histogram struct {
SampleCount *uint64 `protobuf:"varint,1,opt,name=sample_count" json:"sample_count,omitempty"`
SampleSum *float64 `protobuf:"fixed64,2,opt,name=sample_sum" json:"sample_sum,omitempty"`
Bucket []*Bucket `protobuf:"bytes,3,rep,name=bucket" json:"bucket,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Histogram) Reset() { *m = Histogram{} }
func (m *Histogram) String() string { return proto.CompactTextString(m) }
func (*Histogram) ProtoMessage() {}
func (m *Histogram) GetSampleCount() uint64 {
if m != nil && m.SampleCount != nil {
return *m.SampleCount
}
return 0
}
func (m *Histogram) GetSampleSum() float64 {
if m != nil && m.SampleSum != nil {
return *m.SampleSum
}
return 0
}
func (m *Histogram) GetBucket() []*Bucket {
if m != nil {
return m.Bucket
}
return nil
}
type Bucket struct {
CumulativeCount *uint64 `protobuf:"varint,1,opt,name=cumulative_count" json:"cumulative_count,omitempty"`
UpperBound *float64 `protobuf:"fixed64,2,opt,name=upper_bound" json:"upper_bound,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Bucket) Reset() { *m = Bucket{} }
func (m *Bucket) String() string { return proto.CompactTextString(m) }
func (*Bucket) ProtoMessage() {}
func (m *Bucket) GetCumulativeCount() uint64 {
if m != nil && m.CumulativeCount != nil {
return *m.CumulativeCount
}
return 0
}
func (m *Bucket) GetUpperBound() float64 {
if m != nil && m.UpperBound != nil {
return *m.UpperBound
}
return 0
}
type Metric struct {
Label []*LabelPair `protobuf:"bytes,1,rep,name=label" json:"label,omitempty"`
Gauge *Gauge `protobuf:"bytes,2,opt,name=gauge" json:"gauge,omitempty"`
Counter *Counter `protobuf:"bytes,3,opt,name=counter" json:"counter,omitempty"`
Summary *Summary `protobuf:"bytes,4,opt,name=summary" json:"summary,omitempty"`
Untyped *Untyped `protobuf:"bytes,5,opt,name=untyped" json:"untyped,omitempty"`
Histogram *Histogram `protobuf:"bytes,7,opt,name=histogram" json:"histogram,omitempty"`
TimestampMs *int64 `protobuf:"varint,6,opt,name=timestamp_ms" json:"timestamp_ms,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
@ -245,6 +305,13 @@ func (m *Metric) GetUntyped() *Untyped {
return nil
}
func (m *Metric) GetHistogram() *Histogram {
if m != nil {
return m.Histogram
}
return nil
}
func (m *Metric) GetTimestampMs() int64 {
if m != nil && m.TimestampMs != nil {
return *m.TimestampMs

View File

@ -22,7 +22,7 @@
// "fmt"
// "log"
//
// "github.com/prometheus/client_golang/procfs"
// "github.com/prometheus/procfs"
// )
//
// func main() {
@ -31,7 +31,7 @@
// log.Fatalf("could not get process: %s", err)
// }
//
// stat, err := p.Stat()
// stat, err := p.NewStat()
// if err != nil {
// log.Fatalf("could not get process stat: %s", err)
// }

View File

@ -52,10 +52,12 @@ var (
},
[]string{"handler", "verb", "resource", "code"},
)
requestLatencies = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
requestLatencies = prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Name: "apiserver_request_latencies",
Help: "Response latency summary in microseconds for each request handler and verb.",
Help: "Response latency distribution in microseconds for each request handler and verb.",
// Use buckets ranging from 125 ms to 8 seconds.
Buckets: prometheus.ExponentialBuckets(125000, 2.0, 7),
},
[]string{"handler", "verb"},
)