clarification of name uniqueness

This commit is contained in:
Marek Biskup 2015-06-16 17:16:23 +02:00
parent 6674913f92
commit aa0c816d9f

View File

@ -14,7 +14,7 @@ Kubernetes supports a unique [networking model](networking.md). Kubernetes encou
Modern Internet applications are commonly built by layering micro-services, for example a set of web front-ends talking to a distributed in-memory key-value store talking to a replicated storage service. To facilitate this architecture, Kubernetes offers the [service](services.md) abstraction, which provides a stable IP address and [DNS name](dns.md) that corresponds to a dynamic set of pods such as the set of pods constituting a micro-service. The set is defined using a label selector and thus can refer to any set of pods. When a container running in a Kubernetes pod connects to this address, the connection is forwarded by a local agent (called the kube proxy) running on the source machine, to one of the corresponding back-end containers. The exact back-end is chosen using a round-robin policy to balance load. The kube proxy takes care of tracking the dynamic set of back-ends as pods are replaced by new pods on new hosts, so that the service IP address (and DNS name) never changes. Modern Internet applications are commonly built by layering micro-services, for example a set of web front-ends talking to a distributed in-memory key-value store talking to a replicated storage service. To facilitate this architecture, Kubernetes offers the [service](services.md) abstraction, which provides a stable IP address and [DNS name](dns.md) that corresponds to a dynamic set of pods such as the set of pods constituting a micro-service. The set is defined using a label selector and thus can refer to any set of pods. When a container running in a Kubernetes pod connects to this address, the connection is forwarded by a local agent (called the kube proxy) running on the source machine, to one of the corresponding back-end containers. The exact back-end is chosen using a round-robin policy to balance load. The kube proxy takes care of tracking the dynamic set of back-ends as pods are replaced by new pods on new hosts, so that the service IP address (and DNS name) never changes.
Every resource in Kubernetes, such as a pod, is identified by a URI and has a UID. Important components of the URI are the kind of object (e.g. pod), the objects name, and the objects [namespace](namespaces.md). Every name is unique within its namespace, and in contexts where an object name is provided without a namespace, it is assumed to be in the default namespace. UID is unique across time and space. Every resource in Kubernetes, such as a pod, is identified by a URI and has a UID. Important components of the URI are the kind of object (e.g. pod), the objects name, and the objects [namespace](namespaces.md). For a certain object kind, every name is unique within its namespace. In contexts where an object name is provided without a namespace, it is assumed to be in the default namespace. UID is unique across time and space.
Other details: Other details: