mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-11-27 19:16:16 +00:00
Implement resource limit priority function. This function checks if the input pod's
resource limits are satisfied by the input node's allocatable resources or not. If yes, the node is assigned a score of 1, otherwise the node's score is not changed.
This commit is contained in:
128
plugin/pkg/scheduler/algorithm/priorities/resource_limits.go
Normal file
128
plugin/pkg/scheduler/algorithm/priorities/resource_limits.go
Normal file
@@ -0,0 +1,128 @@
|
||||
/*
|
||||
Copyright 2017 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package priorities
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"k8s.io/api/core/v1"
|
||||
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
|
||||
schedulerapi "k8s.io/kubernetes/plugin/pkg/scheduler/api"
|
||||
"k8s.io/kubernetes/plugin/pkg/scheduler/schedulercache"
|
||||
|
||||
"github.com/golang/glog"
|
||||
)
|
||||
|
||||
// ResourceLimitsPriorityMap is a priority function that increases score of input node by 1 if the node satisfies
|
||||
// input pod's resource limits. In detail, this priority function works as follows: If a node does not publish its
|
||||
// allocatable resources (cpu and memory both), the node score is not affected. If a pod does not specify
|
||||
// its cpu and memory limits both, the node score is not affected. If one or both of cpu and memory limits
|
||||
// of the pod are satisfied, the node is assigned a score of 1.
|
||||
// Rationale of choosing the lowest score of 1 is that this is mainly selected to break ties between nodes that have
|
||||
// same scores assigned by one of least and most requested priority functions.
|
||||
func ResourceLimitsPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
|
||||
node := nodeInfo.Node()
|
||||
if node == nil {
|
||||
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
|
||||
}
|
||||
|
||||
allocatableResources := nodeInfo.AllocatableResource()
|
||||
|
||||
// compute pod limits
|
||||
podLimits := getResourceLimits(pod)
|
||||
|
||||
cpuScore := computeScore(podLimits.MilliCPU, allocatableResources.MilliCPU)
|
||||
memScore := computeScore(podLimits.Memory, allocatableResources.Memory)
|
||||
|
||||
score := int(0)
|
||||
if cpuScore == 1 || memScore == 1 {
|
||||
score = 1
|
||||
}
|
||||
|
||||
if glog.V(10) {
|
||||
// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
|
||||
// not logged. There is visible performance gain from it.
|
||||
glog.Infof(
|
||||
"%v -> %v: Resource Limits Priority, allocatable %d millicores %d memory bytes, pod limits %d millicores %d memory bytes, score %d",
|
||||
pod.Name, node.Name,
|
||||
allocatableResources.MilliCPU, allocatableResources.Memory,
|
||||
podLimits.MilliCPU, podLimits.Memory,
|
||||
score,
|
||||
)
|
||||
}
|
||||
|
||||
return schedulerapi.HostPriority{
|
||||
Host: node.Name,
|
||||
Score: score,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// computeScore return 1 if limit value is less than or equal to allocable
|
||||
// value, otherwise it returns 0.
|
||||
func computeScore(limit, allocatable int64) int64 {
|
||||
if limit != 0 && allocatable != 0 && limit <= allocatable {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// getResourceLimits computes resource limits for input pod.
|
||||
// The reason to create this new function is to be consistent with other
|
||||
// priority functions because most or perhaps all priority functions work
|
||||
// with schedulercache.Resource.
|
||||
// TODO: cache it as part of metadata passed to priority functions.
|
||||
func getResourceLimits(pod *v1.Pod) *schedulercache.Resource {
|
||||
result := &schedulercache.Resource{}
|
||||
for _, container := range pod.Spec.Containers {
|
||||
result.Add(container.Resources.Limits)
|
||||
}
|
||||
|
||||
// take max_resource(sum_pod, any_init_container)
|
||||
for _, container := range pod.Spec.InitContainers {
|
||||
for rName, rQuantity := range container.Resources.Limits {
|
||||
switch rName {
|
||||
case v1.ResourceMemory:
|
||||
if mem := rQuantity.Value(); mem > result.Memory {
|
||||
result.Memory = mem
|
||||
}
|
||||
case v1.ResourceCPU:
|
||||
if cpu := rQuantity.MilliValue(); cpu > result.MilliCPU {
|
||||
result.MilliCPU = cpu
|
||||
}
|
||||
// keeping these resources though score computation in other priority functions and in this
|
||||
// are only computed based on cpu and memory only.
|
||||
case v1.ResourceEphemeralStorage:
|
||||
if ephemeralStorage := rQuantity.Value(); ephemeralStorage > result.EphemeralStorage {
|
||||
result.EphemeralStorage = ephemeralStorage
|
||||
}
|
||||
case v1.ResourceNvidiaGPU:
|
||||
if gpu := rQuantity.Value(); gpu > result.NvidiaGPU {
|
||||
result.NvidiaGPU = gpu
|
||||
}
|
||||
default:
|
||||
if v1helper.IsScalarResourceName(rName) {
|
||||
value := rQuantity.Value()
|
||||
if value > result.ScalarResources[rName] {
|
||||
result.SetScalar(rName, value)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
Reference in New Issue
Block a user