Merge pull request #109244 from alexzielenski/clean-third-party-forks

remove unused/orphaned golang package forks
This commit is contained in:
Kubernetes Prow Robot 2022-05-03 19:29:35 -07:00 committed by GitHub
commit bd6c284583
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 0 additions and 1309 deletions

View File

@ -1,388 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflect is a fork of go's standard library reflection package, which
// allows for deep equal with equality functions defined.
package reflect
import (
"fmt"
"reflect"
"strings"
)
// Equalities is a map from type to a function comparing two values of
// that type.
type Equalities map[reflect.Type]reflect.Value
// For convenience, panics on errors
func EqualitiesOrDie(funcs ...interface{}) Equalities {
e := Equalities{}
if err := e.AddFuncs(funcs...); err != nil {
panic(err)
}
return e
}
// AddFuncs is a shortcut for multiple calls to AddFunc.
func (e Equalities) AddFuncs(funcs ...interface{}) error {
for _, f := range funcs {
if err := e.AddFunc(f); err != nil {
return err
}
}
return nil
}
// AddFunc uses func as an equality function: it must take
// two parameters of the same type, and return a boolean.
func (e Equalities) AddFunc(eqFunc interface{}) error {
fv := reflect.ValueOf(eqFunc)
ft := fv.Type()
if ft.Kind() != reflect.Func {
return fmt.Errorf("expected func, got: %v", ft)
}
if ft.NumIn() != 2 {
return fmt.Errorf("expected two 'in' params, got: %v", ft)
}
if ft.NumOut() != 1 {
return fmt.Errorf("expected one 'out' param, got: %v", ft)
}
if ft.In(0) != ft.In(1) {
return fmt.Errorf("expected arg 1 and 2 to have same type, but got %v", ft)
}
var forReturnType bool
boolType := reflect.TypeOf(forReturnType)
if ft.Out(0) != boolType {
return fmt.Errorf("expected bool return, got: %v", ft)
}
e[ft.In(0)] = fv
return nil
}
// Below here is forked from go's reflect/deepequal.go
// During deepValueEqual, must keep track of checks that are
// in progress. The comparison algorithm assumes that all
// checks in progress are true when it reencounters them.
// Visited comparisons are stored in a map indexed by visit.
type visit struct {
a1 uintptr
a2 uintptr
typ reflect.Type
}
// unexportedTypePanic is thrown when you use this DeepEqual on something that has an
// unexported type. It indicates a programmer error, so should not occur at runtime,
// which is why it's not public and thus impossible to catch.
type unexportedTypePanic []reflect.Type
func (u unexportedTypePanic) Error() string { return u.String() }
func (u unexportedTypePanic) String() string {
strs := make([]string, len(u))
for i, t := range u {
strs[i] = fmt.Sprintf("%v", t)
}
return "an unexported field was encountered, nested like this: " + strings.Join(strs, " -> ")
}
func makeUsefulPanic(v reflect.Value) {
if x := recover(); x != nil {
if u, ok := x.(unexportedTypePanic); ok {
u = append(unexportedTypePanic{v.Type()}, u...)
x = u
}
panic(x)
}
}
// Tests for deep equality using reflected types. The map argument tracks
// comparisons that have already been seen, which allows short circuiting on
// recursive types.
func (e Equalities) deepValueEqual(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool {
defer makeUsefulPanic(v1)
if !v1.IsValid() || !v2.IsValid() {
return v1.IsValid() == v2.IsValid()
}
if v1.Type() != v2.Type() {
return false
}
if fv, ok := e[v1.Type()]; ok {
return fv.Call([]reflect.Value{v1, v2})[0].Bool()
}
hard := func(k reflect.Kind) bool {
switch k {
case reflect.Array, reflect.Map, reflect.Slice, reflect.Struct:
return true
}
return false
}
if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) {
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
// ... or already seen
typ := v1.Type()
v := visit{addr1, addr2, typ}
if visited[v] {
return true
}
// Remember for later.
visited[v] = true
}
switch v1.Kind() {
case reflect.Array:
// We don't need to check length here because length is part of
// an array's type, which has already been filtered for.
for i := 0; i < v1.Len(); i++ {
if !e.deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Slice:
if (v1.IsNil() || v1.Len() == 0) != (v2.IsNil() || v2.Len() == 0) {
return false
}
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() != v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for i := 0; i < v1.Len(); i++ {
if !e.deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Interface:
if v1.IsNil() || v2.IsNil() {
return v1.IsNil() == v2.IsNil()
}
return e.deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Ptr:
return e.deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Struct:
for i, n := 0, v1.NumField(); i < n; i++ {
if !e.deepValueEqual(v1.Field(i), v2.Field(i), visited, depth+1) {
return false
}
}
return true
case reflect.Map:
if (v1.IsNil() || v1.Len() == 0) != (v2.IsNil() || v2.Len() == 0) {
return false
}
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() != v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for _, k := range v1.MapKeys() {
if !e.deepValueEqual(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) {
return false
}
}
return true
case reflect.Func:
if v1.IsNil() && v2.IsNil() {
return true
}
// Can't do better than this:
return false
default:
// Normal equality suffices
if !v1.CanInterface() || !v2.CanInterface() {
panic(unexportedTypePanic{})
}
return v1.Interface() == v2.Interface()
}
}
// DeepEqual is like reflect.DeepEqual, but focused on semantic equality
// instead of memory equality.
//
// It will use e's equality functions if it finds types that match.
//
// An empty slice *is* equal to a nil slice for our purposes; same for maps.
//
// Unexported field members cannot be compared and will cause an informative panic; you must add an Equality
// function for these types.
func (e Equalities) DeepEqual(a1, a2 interface{}) bool {
if a1 == nil || a2 == nil {
return a1 == a2
}
v1 := reflect.ValueOf(a1)
v2 := reflect.ValueOf(a2)
if v1.Type() != v2.Type() {
return false
}
return e.deepValueEqual(v1, v2, make(map[visit]bool), 0)
}
func (e Equalities) deepValueDerive(v1, v2 reflect.Value, visited map[visit]bool, depth int) bool {
defer makeUsefulPanic(v1)
if !v1.IsValid() || !v2.IsValid() {
return v1.IsValid() == v2.IsValid()
}
if v1.Type() != v2.Type() {
return false
}
if fv, ok := e[v1.Type()]; ok {
return fv.Call([]reflect.Value{v1, v2})[0].Bool()
}
hard := func(k reflect.Kind) bool {
switch k {
case reflect.Array, reflect.Map, reflect.Slice, reflect.Struct:
return true
}
return false
}
if v1.CanAddr() && v2.CanAddr() && hard(v1.Kind()) {
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
// ... or already seen
typ := v1.Type()
v := visit{addr1, addr2, typ}
if visited[v] {
return true
}
// Remember for later.
visited[v] = true
}
switch v1.Kind() {
case reflect.Array:
// We don't need to check length here because length is part of
// an array's type, which has already been filtered for.
for i := 0; i < v1.Len(); i++ {
if !e.deepValueDerive(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.Slice:
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for i := 0; i < v1.Len(); i++ {
if !e.deepValueDerive(v1.Index(i), v2.Index(i), visited, depth+1) {
return false
}
}
return true
case reflect.String:
if v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
return v1.String() == v2.String()
case reflect.Interface:
if v1.IsNil() {
return true
}
return e.deepValueDerive(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Ptr:
if v1.IsNil() {
return true
}
return e.deepValueDerive(v1.Elem(), v2.Elem(), visited, depth+1)
case reflect.Struct:
for i, n := 0, v1.NumField(); i < n; i++ {
if !e.deepValueDerive(v1.Field(i), v2.Field(i), visited, depth+1) {
return false
}
}
return true
case reflect.Map:
if v1.IsNil() || v1.Len() == 0 {
return true
}
if v1.Len() > v2.Len() {
return false
}
if v1.Pointer() == v2.Pointer() {
return true
}
for _, k := range v1.MapKeys() {
if !e.deepValueDerive(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) {
return false
}
}
return true
case reflect.Func:
if v1.IsNil() && v2.IsNil() {
return true
}
// Can't do better than this:
return false
default:
// Normal equality suffices
if !v1.CanInterface() || !v2.CanInterface() {
panic(unexportedTypePanic{})
}
return v1.Interface() == v2.Interface()
}
}
// DeepDerivative is similar to DeepEqual except that unset fields in a1 are
// ignored (not compared). This allows us to focus on the fields that matter to
// the semantic comparison.
//
// The unset fields include a nil pointer and an empty string.
func (e Equalities) DeepDerivative(a1, a2 interface{}) bool {
if a1 == nil {
return true
}
v1 := reflect.ValueOf(a1)
v2 := reflect.ValueOf(a2)
if v1.Type() != v2.Type() {
return false
}
return e.deepValueDerive(v1, v2, make(map[visit]bool), 0)
}

View File

@ -1,137 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"testing"
)
func TestEqualities(t *testing.T) {
e := Equalities{}
type Bar struct {
X int
}
type Baz struct {
Y Bar
}
err := e.AddFuncs(
func(a, b int) bool {
return a+1 == b
},
func(a, b Bar) bool {
return a.X*10 == b.X
},
)
if err != nil {
t.Fatalf("Unexpected: %v", err)
}
type Foo struct {
X int
}
table := []struct {
a, b interface{}
equal bool
}{
{1, 2, true},
{2, 1, false},
{"foo", "fo", false},
{"foo", "foo", true},
{"foo", "foobar", false},
{Foo{1}, Foo{2}, true},
{Foo{2}, Foo{1}, false},
{Bar{1}, Bar{10}, true},
{&Bar{1}, &Bar{10}, true},
{Baz{Bar{1}}, Baz{Bar{10}}, true},
{[...]string{}, [...]string{"1", "2", "3"}, false},
{[...]string{"1"}, [...]string{"1", "2", "3"}, false},
{[...]string{"1", "2", "3"}, [...]string{}, false},
{[...]string{"1", "2", "3"}, [...]string{"1", "2", "3"}, true},
{map[string]int{"foo": 1}, map[string]int{}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2}, true},
{map[string]int{"foo": 2}, map[string]int{"foo": 1}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2, "bar": 6}, false},
{map[string]int{"foo": 1, "bar": 6}, map[string]int{"foo": 2}, false},
{map[string]int{}, map[string]int(nil), true},
{[]string(nil), []string(nil), true},
{[]string{}, []string(nil), true},
{[]string(nil), []string{}, true},
{[]string{"1"}, []string(nil), false},
{[]string{}, []string{"1", "2", "3"}, false},
{[]string{"1"}, []string{"1", "2", "3"}, false},
{[]string{"1", "2", "3"}, []string{}, false},
}
for _, item := range table {
if e, a := item.equal, e.DeepEqual(item.a, item.b); e != a {
t.Errorf("Expected (%+v == %+v) == %v, but got %v", item.a, item.b, e, a)
}
}
}
func TestDerivates(t *testing.T) {
e := Equalities{}
type Bar struct {
X int
}
type Baz struct {
Y Bar
}
err := e.AddFuncs(
func(a, b int) bool {
return a+1 == b
},
func(a, b Bar) bool {
return a.X*10 == b.X
},
)
if err != nil {
t.Fatalf("Unexpected: %v", err)
}
type Foo struct {
X int
}
table := []struct {
a, b interface{}
equal bool
}{
{1, 2, true},
{2, 1, false},
{"foo", "fo", false},
{"foo", "foo", true},
{"foo", "foobar", false},
{Foo{1}, Foo{2}, true},
{Foo{2}, Foo{1}, false},
{Bar{1}, Bar{10}, true},
{&Bar{1}, &Bar{10}, true},
{Baz{Bar{1}}, Baz{Bar{10}}, true},
{[...]string{}, [...]string{"1", "2", "3"}, false},
{[...]string{"1"}, [...]string{"1", "2", "3"}, false},
{[...]string{"1", "2", "3"}, [...]string{}, false},
{[...]string{"1", "2", "3"}, [...]string{"1", "2", "3"}, true},
{map[string]int{"foo": 1}, map[string]int{}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2}, true},
{map[string]int{"foo": 2}, map[string]int{"foo": 1}, false},
{map[string]int{"foo": 1}, map[string]int{"foo": 2, "bar": 6}, true},
{map[string]int{"foo": 1, "bar": 6}, map[string]int{"foo": 2}, false},
{map[string]int{}, map[string]int(nil), true},
{[]string(nil), []string(nil), true},
{[]string{}, []string(nil), true},
{[]string(nil), []string{}, true},
{[]string{"1"}, []string(nil), false},
{[]string{}, []string{"1", "2", "3"}, true},
{[]string{"1"}, []string{"1", "2", "3"}, true},
{[]string{"1", "2", "3"}, []string{}, false},
}
for _, item := range table {
if e, a := item.equal, e.DeepDerivative(item.a, item.b); e != a {
t.Errorf("Expected (%+v ~ %+v) == %v, but got %v", item.a, item.b, e, a)
}
}
}

View File

@ -1,91 +0,0 @@
//This package is copied from Go library reflect/type.go.
//The struct tag library provides no way to extract the list of struct tags, only
//a specific tag
package reflect
import (
"fmt"
"strconv"
"strings"
)
type StructTag struct {
Name string
Value string
}
func (t StructTag) String() string {
return fmt.Sprintf("%s:%q", t.Name, t.Value)
}
type StructTags []StructTag
func (tags StructTags) String() string {
s := make([]string, 0, len(tags))
for _, tag := range tags {
s = append(s, tag.String())
}
return "`" + strings.Join(s, " ") + "`"
}
func (tags StructTags) Has(name string) bool {
for i := range tags {
if tags[i].Name == name {
return true
}
}
return false
}
// ParseStructTags returns the full set of fields in a struct tag in the order they appear in
// the struct tag.
func ParseStructTags(tag string) (StructTags, error) {
tags := StructTags{}
for tag != "" {
// Skip leading space.
i := 0
for i < len(tag) && tag[i] == ' ' {
i++
}
tag = tag[i:]
if tag == "" {
break
}
// Scan to colon. A space, a quote or a control character is a syntax error.
// Strictly speaking, control chars include the range [0x7f, 0x9f], not just
// [0x00, 0x1f], but in practice, we ignore the multi-byte control characters
// as it is simpler to inspect the tag's bytes than the tag's runes.
i = 0
for i < len(tag) && tag[i] > ' ' && tag[i] != ':' && tag[i] != '"' && tag[i] != 0x7f {
i++
}
if i == 0 || i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' {
break
}
name := string(tag[:i])
tag = tag[i+1:]
// Scan quoted string to find value.
i = 1
for i < len(tag) && tag[i] != '"' {
if tag[i] == '\\' {
i++
}
i++
}
if i >= len(tag) {
break
}
qvalue := string(tag[:i+1])
tag = tag[i+1:]
value, err := strconv.Unquote(qvalue)
if err != nil {
return nil, err
}
tags = append(tags, StructTag{Name: name, Value: value})
}
return tags, nil
}

View File

@ -1,94 +0,0 @@
//This package is copied from Go library text/template.
//The original private functions indirect and printableValue
//are exported as public functions.
package template
import (
"fmt"
"reflect"
)
var Indirect = indirect
var PrintableValue = printableValue
var (
errorType = reflect.TypeOf((*error)(nil)).Elem()
fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
)
// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
// We indirect through pointers and empty interfaces (only) because
// non-empty interfaces have methods we might need.
func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
if v.IsNil() {
return v, true
}
if v.Kind() == reflect.Interface && v.NumMethod() > 0 {
break
}
}
return v, false
}
// printableValue returns the, possibly indirected, interface value inside v that
// is best for a call to formatted printer.
func printableValue(v reflect.Value) (interface{}, bool) {
if v.Kind() == reflect.Ptr {
v, _ = indirect(v) // fmt.Fprint handles nil.
}
if !v.IsValid() {
return "<no value>", true
}
if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
v = v.Addr()
} else {
switch v.Kind() {
case reflect.Chan, reflect.Func:
return nil, false
}
}
}
return v.Interface(), true
}
// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
func canBeNil(typ reflect.Type) bool {
switch typ.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return true
}
return false
}
// isTrue reports whether the value is 'true', in the sense of not the zero of its type,
// and whether the value has a meaningful truth value.
func isTrue(val reflect.Value) (truth, ok bool) {
if !val.IsValid() {
// Something like var x interface{}, never set. It's a form of nil.
return false, true
}
switch val.Kind() {
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
truth = val.Len() > 0
case reflect.Bool:
truth = val.Bool()
case reflect.Complex64, reflect.Complex128:
truth = val.Complex() != 0
case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
truth = !val.IsNil()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
truth = val.Int() != 0
case reflect.Float32, reflect.Float64:
truth = val.Float() != 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
truth = val.Uint() != 0
case reflect.Struct:
truth = true // Struct values are always true.
default:
return
}
return truth, true
}

View File

@ -1,599 +0,0 @@
//This package is copied from Go library text/template.
//The original private functions eq, ge, gt, le, lt, and ne
//are exported as public functions.
package template
import (
"bytes"
"errors"
"fmt"
"io"
"net/url"
"reflect"
"strings"
"unicode"
"unicode/utf8"
)
var Equal = eq
var GreaterEqual = ge
var Greater = gt
var LessEqual = le
var Less = lt
var NotEqual = ne
// FuncMap is the type of the map defining the mapping from names to functions.
// Each function must have either a single return value, or two return values of
// which the second has type error. In that case, if the second (error)
// return value evaluates to non-nil during execution, execution terminates and
// Execute returns that error.
type FuncMap map[string]interface{}
var builtins = FuncMap{
"and": and,
"call": call,
"html": HTMLEscaper,
"index": index,
"js": JSEscaper,
"len": length,
"not": not,
"or": or,
"print": fmt.Sprint,
"printf": fmt.Sprintf,
"println": fmt.Sprintln,
"urlquery": URLQueryEscaper,
// Comparisons
"eq": eq, // ==
"ge": ge, // >=
"gt": gt, // >
"le": le, // <=
"lt": lt, // <
"ne": ne, // !=
}
var builtinFuncs = createValueFuncs(builtins)
// createValueFuncs turns a FuncMap into a map[string]reflect.Value
func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
m := make(map[string]reflect.Value)
addValueFuncs(m, funcMap)
return m
}
// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
for name, fn := range in {
v := reflect.ValueOf(fn)
if v.Kind() != reflect.Func {
panic("value for " + name + " not a function")
}
if !goodFunc(v.Type()) {
panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut()))
}
out[name] = v
}
}
// AddFuncs adds to values the functions in funcs. It does no checking of the input -
// call addValueFuncs first.
func addFuncs(out, in FuncMap) {
for name, fn := range in {
out[name] = fn
}
}
// goodFunc checks that the function or method has the right result signature.
func goodFunc(typ reflect.Type) bool {
// We allow functions with 1 result or 2 results where the second is an error.
switch {
case typ.NumOut() == 1:
return true
case typ.NumOut() == 2 && typ.Out(1) == errorType:
return true
}
return false
}
// findFunction looks for a function in the template, and global map.
func findFunction(name string) (reflect.Value, bool) {
if fn := builtinFuncs[name]; fn.IsValid() {
return fn, true
}
return reflect.Value{}, false
}
// Indexing.
// index returns the result of indexing its first argument by the following
// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
// indexed item must be a map, slice, or array.
func index(item interface{}, indices ...interface{}) (interface{}, error) {
v := reflect.ValueOf(item)
for _, i := range indices {
index := reflect.ValueOf(i)
var isNil bool
if v, isNil = indirect(v); isNil {
return nil, fmt.Errorf("index of nil pointer")
}
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.String:
var x int64
switch index.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x = index.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
x = int64(index.Uint())
default:
return nil, fmt.Errorf("cannot index slice/array with type %s", index.Type())
}
if x < 0 || x >= int64(v.Len()) {
return nil, fmt.Errorf("index out of range: %d", x)
}
v = v.Index(int(x))
case reflect.Map:
if !index.IsValid() {
index = reflect.Zero(v.Type().Key())
}
if !index.Type().AssignableTo(v.Type().Key()) {
return nil, fmt.Errorf("%s is not index type for %s", index.Type(), v.Type())
}
if x := v.MapIndex(index); x.IsValid() {
v = x
} else {
v = reflect.Zero(v.Type().Elem())
}
default:
return nil, fmt.Errorf("can't index item of type %s", v.Type())
}
}
return v.Interface(), nil
}
// Length
// length returns the length of the item, with an error if it has no defined length.
func length(item interface{}) (int, error) {
v, isNil := indirect(reflect.ValueOf(item))
if isNil {
return 0, fmt.Errorf("len of nil pointer")
}
switch v.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
return v.Len(), nil
}
return 0, fmt.Errorf("len of type %s", v.Type())
}
// Function invocation
// call returns the result of evaluating the first argument as a function.
// The function must return 1 result, or 2 results, the second of which is an error.
func call(fn interface{}, args ...interface{}) (interface{}, error) {
v := reflect.ValueOf(fn)
typ := v.Type()
if typ.Kind() != reflect.Func {
return nil, fmt.Errorf("non-function of type %s", typ)
}
if !goodFunc(typ) {
return nil, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut())
}
numIn := typ.NumIn()
var dddType reflect.Type
if typ.IsVariadic() {
if len(args) < numIn-1 {
return nil, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1)
}
dddType = typ.In(numIn - 1).Elem()
} else {
if len(args) != numIn {
return nil, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn)
}
}
argv := make([]reflect.Value, len(args))
for i, arg := range args {
value := reflect.ValueOf(arg)
// Compute the expected type. Clumsy because of variadics.
var argType reflect.Type
if !typ.IsVariadic() || i < numIn-1 {
argType = typ.In(i)
} else {
argType = dddType
}
if !value.IsValid() && canBeNil(argType) {
value = reflect.Zero(argType)
}
if !value.Type().AssignableTo(argType) {
return nil, fmt.Errorf("arg %d has type %s; should be %s", i, value.Type(), argType)
}
argv[i] = value
}
result := v.Call(argv)
if len(result) == 2 && !result[1].IsNil() {
return result[0].Interface(), result[1].Interface().(error)
}
return result[0].Interface(), nil
}
// Boolean logic.
func truth(a interface{}) bool {
t, _ := isTrue(reflect.ValueOf(a))
return t
}
// and computes the Boolean AND of its arguments, returning
// the first false argument it encounters, or the last argument.
func and(arg0 interface{}, args ...interface{}) interface{} {
if !truth(arg0) {
return arg0
}
for i := range args {
arg0 = args[i]
if !truth(arg0) {
break
}
}
return arg0
}
// or computes the Boolean OR of its arguments, returning
// the first true argument it encounters, or the last argument.
func or(arg0 interface{}, args ...interface{}) interface{} {
if truth(arg0) {
return arg0
}
for i := range args {
arg0 = args[i]
if truth(arg0) {
break
}
}
return arg0
}
// not returns the Boolean negation of its argument.
func not(arg interface{}) (truth bool) {
truth, _ = isTrue(reflect.ValueOf(arg))
return !truth
}
// Comparison.
// TODO: Perhaps allow comparison between signed and unsigned integers.
var (
errBadComparisonType = errors.New("invalid type for comparison")
errBadComparison = errors.New("incompatible types for comparison")
errNoComparison = errors.New("missing argument for comparison")
)
type kind int
const (
invalidKind kind = iota
boolKind
complexKind
intKind
floatKind
integerKind
stringKind
uintKind
)
func basicKind(v reflect.Value) (kind, error) {
switch v.Kind() {
case reflect.Bool:
return boolKind, nil
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return intKind, nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintKind, nil
case reflect.Float32, reflect.Float64:
return floatKind, nil
case reflect.Complex64, reflect.Complex128:
return complexKind, nil
case reflect.String:
return stringKind, nil
}
return invalidKind, errBadComparisonType
}
// eq evaluates the comparison a == b || a == c || ...
func eq(arg1 interface{}, arg2 ...interface{}) (bool, error) {
v1 := reflect.ValueOf(arg1)
k1, err := basicKind(v1)
if err != nil {
return false, err
}
if len(arg2) == 0 {
return false, errNoComparison
}
for _, arg := range arg2 {
v2 := reflect.ValueOf(arg)
k2, err := basicKind(v2)
if err != nil {
return false, err
}
truth := false
if k1 != k2 {
// Special case: Can compare integer values regardless of type's sign.
switch {
case k1 == intKind && k2 == uintKind:
truth = v1.Int() >= 0 && uint64(v1.Int()) == v2.Uint()
case k1 == uintKind && k2 == intKind:
truth = v2.Int() >= 0 && v1.Uint() == uint64(v2.Int())
default:
return false, errBadComparison
}
} else {
switch k1 {
case boolKind:
truth = v1.Bool() == v2.Bool()
case complexKind:
truth = v1.Complex() == v2.Complex()
case floatKind:
truth = v1.Float() == v2.Float()
case intKind:
truth = v1.Int() == v2.Int()
case stringKind:
truth = v1.String() == v2.String()
case uintKind:
truth = v1.Uint() == v2.Uint()
default:
panic("invalid kind")
}
}
if truth {
return true, nil
}
}
return false, nil
}
// ne evaluates the comparison a != b.
func ne(arg1, arg2 interface{}) (bool, error) {
// != is the inverse of ==.
equal, err := eq(arg1, arg2)
return !equal, err
}
// lt evaluates the comparison a < b.
func lt(arg1, arg2 interface{}) (bool, error) {
v1 := reflect.ValueOf(arg1)
k1, err := basicKind(v1)
if err != nil {
return false, err
}
v2 := reflect.ValueOf(arg2)
k2, err := basicKind(v2)
if err != nil {
return false, err
}
truth := false
if k1 != k2 {
// Special case: Can compare integer values regardless of type's sign.
switch {
case k1 == intKind && k2 == uintKind:
truth = v1.Int() < 0 || uint64(v1.Int()) < v2.Uint()
case k1 == uintKind && k2 == intKind:
truth = v2.Int() >= 0 && v1.Uint() < uint64(v2.Int())
default:
return false, errBadComparison
}
} else {
switch k1 {
case boolKind, complexKind:
return false, errBadComparisonType
case floatKind:
truth = v1.Float() < v2.Float()
case intKind:
truth = v1.Int() < v2.Int()
case stringKind:
truth = v1.String() < v2.String()
case uintKind:
truth = v1.Uint() < v2.Uint()
default:
panic("invalid kind")
}
}
return truth, nil
}
// le evaluates the comparison <= b.
func le(arg1, arg2 interface{}) (bool, error) {
// <= is < or ==.
lessThan, err := lt(arg1, arg2)
if lessThan || err != nil {
return lessThan, err
}
return eq(arg1, arg2)
}
// gt evaluates the comparison a > b.
func gt(arg1, arg2 interface{}) (bool, error) {
// > is the inverse of <=.
lessOrEqual, err := le(arg1, arg2)
if err != nil {
return false, err
}
return !lessOrEqual, nil
}
// ge evaluates the comparison a >= b.
func ge(arg1, arg2 interface{}) (bool, error) {
// >= is the inverse of <.
lessThan, err := lt(arg1, arg2)
if err != nil {
return false, err
}
return !lessThan, nil
}
// HTML escaping.
var (
htmlQuot = []byte("&#34;") // shorter than "&quot;"
htmlApos = []byte("&#39;") // shorter than "&apos;" and apos was not in HTML until HTML5
htmlAmp = []byte("&amp;")
htmlLt = []byte("&lt;")
htmlGt = []byte("&gt;")
)
// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
func HTMLEscape(w io.Writer, b []byte) {
last := 0
for i, c := range b {
var html []byte
switch c {
case '"':
html = htmlQuot
case '\'':
html = htmlApos
case '&':
html = htmlAmp
case '<':
html = htmlLt
case '>':
html = htmlGt
default:
continue
}
w.Write(b[last:i])
w.Write(html)
last = i + 1
}
w.Write(b[last:])
}
// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
func HTMLEscapeString(s string) string {
// Avoid allocation if we can.
if strings.IndexAny(s, `'"&<>`) < 0 {
return s
}
var b bytes.Buffer
HTMLEscape(&b, []byte(s))
return b.String()
}
// HTMLEscaper returns the escaped HTML equivalent of the textual
// representation of its arguments.
func HTMLEscaper(args ...interface{}) string {
return HTMLEscapeString(evalArgs(args))
}
// JavaScript escaping.
var (
jsLowUni = []byte(`\u00`)
hex = []byte("0123456789ABCDEF")
jsBackslash = []byte(`\\`)
jsApos = []byte(`\'`)
jsQuot = []byte(`\"`)
jsLt = []byte(`\x3C`)
jsGt = []byte(`\x3E`)
)
// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
func JSEscape(w io.Writer, b []byte) {
last := 0
for i := 0; i < len(b); i++ {
c := b[i]
if !jsIsSpecial(rune(c)) {
// fast path: nothing to do
continue
}
w.Write(b[last:i])
if c < utf8.RuneSelf {
// Quotes, slashes and angle brackets get quoted.
// Control characters get written as \u00XX.
switch c {
case '\\':
w.Write(jsBackslash)
case '\'':
w.Write(jsApos)
case '"':
w.Write(jsQuot)
case '<':
w.Write(jsLt)
case '>':
w.Write(jsGt)
default:
w.Write(jsLowUni)
t, b := c>>4, c&0x0f
w.Write(hex[t : t+1])
w.Write(hex[b : b+1])
}
} else {
// Unicode rune.
r, size := utf8.DecodeRune(b[i:])
if unicode.IsPrint(r) {
w.Write(b[i : i+size])
} else {
fmt.Fprintf(w, "\\u%04X", r)
}
i += size - 1
}
last = i + 1
}
w.Write(b[last:])
}
// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
func JSEscapeString(s string) string {
// Avoid allocation if we can.
if strings.IndexFunc(s, jsIsSpecial) < 0 {
return s
}
var b bytes.Buffer
JSEscape(&b, []byte(s))
return b.String()
}
func jsIsSpecial(r rune) bool {
switch r {
case '\\', '\'', '"', '<', '>':
return true
}
return r < ' ' || utf8.RuneSelf <= r
}
// JSEscaper returns the escaped JavaScript equivalent of the textual
// representation of its arguments.
func JSEscaper(args ...interface{}) string {
return JSEscapeString(evalArgs(args))
}
// URLQueryEscaper returns the escaped value of the textual representation of
// its arguments in a form suitable for embedding in a URL query.
func URLQueryEscaper(args ...interface{}) string {
return url.QueryEscape(evalArgs(args))
}
// evalArgs formats the list of arguments into a string. It is therefore equivalent to
// fmt.Sprint(args...)
// except that each argument is indirected (if a pointer), as required,
// using the same rules as the default string evaluation during template
// execution.
func evalArgs(args []interface{}) string {
ok := false
var s string
// Fast path for simple common case.
if len(args) == 1 {
s, ok = args[0].(string)
}
if !ok {
for i, arg := range args {
a, ok := printableValue(reflect.ValueOf(arg))
if ok {
args[i] = a
} // else left fmt do its thing
}
s = fmt.Sprint(args...)
}
return s
}