mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-09-14 13:45:06 +00:00
Updated spark examples with docker images moved to gcr.io/google_containers
This commit is contained in:
@@ -12,9 +12,7 @@ section.
|
||||
|
||||
### Sources
|
||||
|
||||
Source is freely available at:
|
||||
* Docker image - https://github.com/mattf/docker-spark
|
||||
* Docker Trusted Build - https://registry.hub.docker.com/search?q=mattf/spark
|
||||
The Docker images are heavily based on https://github.com/mattf/docker-spark
|
||||
|
||||
## Step Zero: Prerequisites
|
||||
|
||||
@@ -36,7 +34,7 @@ the Master service.
|
||||
$ kubectl create -f examples/spark/spark-master.json
|
||||
```
|
||||
|
||||
Then, use the `examples/spark/spark-master-service.json` file to
|
||||
Then, use the [`examples/spark/spark-master-service.json`](spar-master-service.json) file to
|
||||
create a logical service endpoint that Spark workers can use to access
|
||||
the Master pod.
|
||||
|
||||
@@ -44,38 +42,42 @@ the Master pod.
|
||||
$ kubectl create -f examples/spark/spark-master-service.json
|
||||
```
|
||||
|
||||
Ensure that the Master service is running and functional.
|
||||
|
||||
### Check to see if Master is running and accessible
|
||||
|
||||
```shell
|
||||
$ kubectl get pods,services
|
||||
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS
|
||||
spark-master 192.168.90.14 spark-master mattf/spark-master 172.18.145.8/172.18.145.8 name=spark-master Running
|
||||
NAME LABELS SELECTOR IP PORT
|
||||
kubernetes component=apiserver,provider=kubernetes <none> 10.254.0.2 443
|
||||
spark-master name=spark-master name=spark-master 10.254.125.166 7077
|
||||
$ kubectl get pods
|
||||
NAME READY REASON RESTARTS AGE
|
||||
[...]
|
||||
spark-master 1/1 Running 0 25s
|
||||
|
||||
```
|
||||
|
||||
Connect to http://192.168.90.14:8080 to see the status of the master.
|
||||
Check logs to see the status of the master.
|
||||
|
||||
```shell
|
||||
$ links -dump 192.168.90.14:8080
|
||||
[IMG] 1.2.1 Spark Master at spark://spark-master:7077
|
||||
$ kubectl logs spark-master
|
||||
|
||||
* URL: spark://spark-master:7077
|
||||
* Workers: 0
|
||||
* Cores: 0 Total, 0 Used
|
||||
* Memory: 0.0 B Total, 0.0 B Used
|
||||
* Applications: 0 Running, 0 Completed
|
||||
* Drivers: 0 Running, 0 Completed
|
||||
* Status: ALIVE
|
||||
...
|
||||
starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.4.0-bin-hadoop2.6/sbin/../logs/spark--org.apache.spark.deploy.master.Master-1-spark-master.out
|
||||
Spark Command: /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java -cp /opt/spark-1.4.0-bin-hadoop2.6/sbin/../conf/:/opt/spark-1.4.0-bin-hadoop2.6/lib/spark-assembly-1.4.0-hadoop2.6.0.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar -Xms512m -Xmx512m -XX:MaxPermSize=128m org.apache.spark.deploy.master.Master --ip spark-master --port 7077 --webui-port 8080
|
||||
========================================
|
||||
15/06/26 14:01:49 INFO Master: Registered signal handlers for [TERM, HUP, INT]
|
||||
15/06/26 14:01:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
|
||||
15/06/26 14:01:51 INFO SecurityManager: Changing view acls to: root
|
||||
15/06/26 14:01:51 INFO SecurityManager: Changing modify acls to: root
|
||||
15/06/26 14:01:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
|
||||
15/06/26 14:01:51 INFO Slf4jLogger: Slf4jLogger started
|
||||
15/06/26 14:01:51 INFO Remoting: Starting remoting
|
||||
15/06/26 14:01:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077]
|
||||
15/06/26 14:01:52 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
|
||||
15/06/26 14:01:52 INFO Utils: Successfully started service on port 6066.
|
||||
15/06/26 14:01:52 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
|
||||
15/06/26 14:01:52 INFO Master: Starting Spark master at spark://spark-master:7077
|
||||
15/06/26 14:01:52 INFO Master: Running Spark version 1.4.0
|
||||
15/06/26 14:01:52 INFO Utils: Successfully started service 'MasterUI' on port 8080.
|
||||
15/06/26 14:01:52 INFO MasterWebUI: Started MasterWebUI at http://10.244.2.34:8080
|
||||
15/06/26 14:01:53 INFO Master: I have been elected leader! New state: ALIVE
|
||||
```
|
||||
|
||||
(Pull requests welcome for an alternative that uses the service IP and
|
||||
port)
|
||||
|
||||
## Step Two: Start your Spark workers
|
||||
|
||||
The Spark workers do the heavy lifting in a Spark cluster. They
|
||||
@@ -94,71 +96,80 @@ $ kubectl create -f examples/spark/spark-worker-controller.json
|
||||
### Check to see if the workers are running
|
||||
|
||||
```shell
|
||||
$ links -dump 192.168.90.14:8080
|
||||
[IMG] 1.2.1 Spark Master at spark://spark-master:7077
|
||||
$ kubectl get pods
|
||||
NAME READY REASON RESTARTS AGE
|
||||
[...]
|
||||
spark-master 1/1 Running 0 14m
|
||||
spark-worker-controller-hifwi 1/1 Running 0 33s
|
||||
spark-worker-controller-u40r2 1/1 Running 0 33s
|
||||
spark-worker-controller-vpgyg 1/1 Running 0 33s
|
||||
|
||||
* URL: spark://spark-master:7077
|
||||
* Workers: 3
|
||||
* Cores: 12 Total, 0 Used
|
||||
* Memory: 20.4 GB Total, 0.0 B Used
|
||||
* Applications: 0 Running, 0 Completed
|
||||
* Drivers: 0 Running, 0 Completed
|
||||
* Status: ALIVE
|
||||
|
||||
Workers
|
||||
|
||||
Id Address State Cores Memory
|
||||
4 (0 6.8 GB
|
||||
worker-20150318151745-192.168.75.14-46422 192.168.75.14:46422 ALIVE Used) (0.0 B
|
||||
Used)
|
||||
4 (0 6.8 GB
|
||||
worker-20150318151746-192.168.35.17-53654 192.168.35.17:53654 ALIVE Used) (0.0 B
|
||||
Used)
|
||||
4 (0 6.8 GB
|
||||
worker-20150318151746-192.168.90.17-50490 192.168.90.17:50490 ALIVE Used) (0.0 B
|
||||
Used)
|
||||
...
|
||||
$ kubectl logs spark-master
|
||||
[...]
|
||||
15/06/26 14:15:43 INFO Master: Registering worker 10.244.2.35:46199 with 1 cores, 2.6 GB RAM
|
||||
15/06/26 14:15:55 INFO Master: Registering worker 10.244.1.15:44839 with 1 cores, 2.6 GB RAM
|
||||
15/06/26 14:15:55 INFO Master: Registering worker 10.244.0.19:60970 with 1 cores, 2.6 GB RAM
|
||||
```
|
||||
|
||||
(Pull requests welcome for an alternative that uses the service IP and
|
||||
port)
|
||||
|
||||
## Step Three: Do something with the cluster
|
||||
|
||||
Get the address and port of the Master service.
|
||||
|
||||
```shell
|
||||
$ kubectl get pods,services
|
||||
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS
|
||||
spark-master 192.168.90.14 spark-master mattf/spark-master 172.18.145.8/172.18.145.8 name=spark-master Running
|
||||
spark-worker-controller-51wgg 192.168.75.14 spark-worker mattf/spark-worker 172.18.145.9/172.18.145.9 name=spark-worker,uses=spark-master Running
|
||||
spark-worker-controller-5v48c 192.168.90.17 spark-worker mattf/spark-worker 172.18.145.8/172.18.145.8 name=spark-worker,uses=spark-master Running
|
||||
spark-worker-controller-ehq23 192.168.35.17 spark-worker mattf/spark-worker 172.18.145.12/172.18.145.12 name=spark-worker,uses=spark-master Running
|
||||
NAME LABELS SELECTOR IP PORT
|
||||
kubernetes component=apiserver,provider=kubernetes <none> 10.254.0.2 443
|
||||
spark-master name=spark-master name=spark-master 10.254.125.166 7077
|
||||
$ kubectl get service spark-master
|
||||
NAME LABELS SELECTOR IP(S) PORT(S)
|
||||
spark-master name=spark-master name=spark-master 10.0.204.187 7077/TCP
|
||||
```
|
||||
|
||||
$ sudo docker run -it mattf/spark-base sh
|
||||
SSH to one of your cluster nodes. On GCE/GKE you can either use [Developers Console](https://console.developers.google.com)
|
||||
(more details [here](https://cloud.google.com/compute/docs/ssh-in-browser))
|
||||
or run `gcloud compute ssh <name>` where the name can be taken from `kubectl get nodes`
|
||||
(more details [here](https://cloud.google.com/compute/docs/gcloud-compute/#connecting)).
|
||||
|
||||
sh-4.2# echo "10.254.125.166 spark-master" >> /etc/hosts
|
||||
```
|
||||
$ kubectl get nodes
|
||||
NAME LABELS STATUS
|
||||
kubernetes-minion-5jvu kubernetes.io/hostname=kubernetes-minion-5jvu Ready
|
||||
kubernetes-minion-6fbi kubernetes.io/hostname=kubernetes-minion-6fbi Ready
|
||||
kubernetes-minion-8y2v kubernetes.io/hostname=kubernetes-minion-8y2v Ready
|
||||
kubernetes-minion-h0tr kubernetes.io/hostname=kubernetes-minion-h0tr Ready
|
||||
|
||||
sh-4.2# export SPARK_LOCAL_HOSTNAME=$(hostname -i)
|
||||
$ gcloud compute ssh kubernetes-minion-5jvu --zone=us-central1-b
|
||||
Linux kubernetes-minion-5jvu 3.16.0-0.bpo.4-amd64 #1 SMP Debian 3.16.7-ckt9-3~deb8u1~bpo70+1 (2015-04-27) x86_64
|
||||
|
||||
sh-4.2# MASTER=spark://spark-master:7077 pyspark
|
||||
Python 2.7.5 (default, Jun 17 2014, 18:11:42)
|
||||
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2
|
||||
=== GCE Kubernetes node setup complete ===
|
||||
|
||||
me@kubernetes-minion-5jvu:~$
|
||||
```
|
||||
|
||||
Once logged in run spark-base image. Inside of the image there is a script
|
||||
that sets up the environment based on the provided IP and port of the Master.
|
||||
|
||||
```
|
||||
cluster-node $ sudo docker run -it gcr.io/google_containers/spark-base
|
||||
root@f12a6fec45ce:/# . /setup_client.sh 10.0.204.187 7077
|
||||
root@f12a6fec45ce:/# pyspark
|
||||
Python 2.7.9 (default, Mar 1 2015, 12:57:24)
|
||||
[GCC 4.9.2] on linux2
|
||||
Type "help", "copyright", "credits" or "license" for more information.
|
||||
15/06/26 14:25:28 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
|
||||
Welcome to
|
||||
____ __
|
||||
/ __/__ ___ _____/ /__
|
||||
_\ \/ _ \/ _ `/ __/ '_/
|
||||
/__ / .__/\_,_/_/ /_/\_\ version 1.2.1
|
||||
/__ / .__/\_,_/_/ /_/\_\ version 1.4.0
|
||||
/_/
|
||||
|
||||
Using Python version 2.7.5 (default, Jun 17 2014 18:11:42)
|
||||
SparkContext available as sc.
|
||||
>>> import socket, resource
|
||||
>>> sc.parallelize(range(1000)).map(lambda x: (socket.gethostname(), resource.getrlimit(resource.RLIMIT_NOFILE))).distinct().collect()
|
||||
[('spark-worker-controller-ehq23', (1048576, 1048576)), ('spark-worker-controller-5v48c', (1048576, 1048576)), ('spark-worker-controller-51wgg', (1048576, 1048576))]
|
||||
Using Python version 2.7.9 (default, Mar 1 2015 12:57:24)
|
||||
SparkContext available as sc, HiveContext available as sqlContext.
|
||||
>>> import socket
|
||||
>>> sc.parallelize(range(1000)).map(lambda x:socket.gethostname()).distinct().collect()
|
||||
['spark-worker-controller-u40r2', 'spark-worker-controller-hifwi', 'spark-worker-controller-vpgyg']
|
||||
```
|
||||
## Result
|
||||
|
||||
You now have services, replication controllers, and pods for the Spark master and Spark workers.
|
||||
You can take this example to the next step and start using the Apache Spark cluster
|
||||
you just created, see [Spark documentation](https://spark.apache.org/documentation.html)
|
||||
for more information.
|
||||
|
||||
## tl;dr
|
||||
|
||||
@@ -170,5 +181,4 @@ Make sure the Master Pod is running (use: ```kubectl get pods```).
|
||||
|
||||
```kubectl create -f spark-worker-controller.json```
|
||||
|
||||
|
||||
[]()
|
||||
|
Reference in New Issue
Block a user