From 43069ef56524fa73823ae10563b594b589244f33 Mon Sep 17 00:00:00 2001 From: Ihar Hrachyshka Date: Thu, 6 Dec 2018 07:22:42 -0800 Subject: [PATCH] Fixed comment to refer to the right int accessor for Quantity It's AsInt64() not Int64(). --- api/openapi-spec/swagger.json | 2 +- .../src/k8s.io/apimachinery/pkg/api/resource/generated.proto | 2 +- staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/api/openapi-spec/swagger.json b/api/openapi-spec/swagger.json index 3c75e3abc47..872fc42cec0 100644 --- a/api/openapi-spec/swagger.json +++ b/api/openapi-spec/swagger.json @@ -18519,7 +18519,7 @@ "type": "object" }, "io.k8s.apimachinery.pkg.api.resource.Quantity": { - "description": "Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and Int64() accessors.\n\nThe serialization format is:\n\n ::= \n (Note that may be empty, from the \"\" case in .)\n ::= 0 | 1 | ... | 9 ::= | ::= | . | . | . ::= \"+\" | \"-\" ::= | ::= | | ::= Ki | Mi | Gi | Ti | Pi | Ei\n (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n ::= m | \"\" | k | M | G | T | P | E\n (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n ::= \"e\" | \"E\" \n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n a. No precision is lost\n b. No fractional digits will be emitted\n c. The exponent (or suffix) is as large as possible.\nThe sign will be omitted unless the number is negative.\n\nExamples:\n 1.5 will be serialized as \"1500m\"\n 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation.", + "description": "Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors.\n\nThe serialization format is:\n\n ::= \n (Note that may be empty, from the \"\" case in .)\n ::= 0 | 1 | ... | 9 ::= | ::= | . | . | . ::= \"+\" | \"-\" ::= | ::= | | ::= Ki | Mi | Gi | Ti | Pi | Ei\n (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)\n ::= m | \"\" | k | M | G | T | P | E\n (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)\n ::= \"e\" | \"E\" \n\nNo matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities.\n\nWhen a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized.\n\nBefore serializing, Quantity will be put in \"canonical form\". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that:\n a. No precision is lost\n b. No fractional digits will be emitted\n c. The exponent (or suffix) is as large as possible.\nThe sign will be omitted unless the number is negative.\n\nExamples:\n 1.5 will be serialized as \"1500m\"\n 1.5Gi will be serialized as \"1536Mi\"\n\nNote that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise.\n\nNon-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don't diff.)\n\nThis format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation.", "type": "string" }, "io.k8s.apimachinery.pkg.apis.meta.v1.APIGroup": { diff --git a/staging/src/k8s.io/apimachinery/pkg/api/resource/generated.proto b/staging/src/k8s.io/apimachinery/pkg/api/resource/generated.proto index acc90444522..18a6c7cd681 100644 --- a/staging/src/k8s.io/apimachinery/pkg/api/resource/generated.proto +++ b/staging/src/k8s.io/apimachinery/pkg/api/resource/generated.proto @@ -26,7 +26,7 @@ option go_package = "resource"; // Quantity is a fixed-point representation of a number. // It provides convenient marshaling/unmarshaling in JSON and YAML, -// in addition to String() and Int64() accessors. +// in addition to String() and AsInt64() accessors. // // The serialization format is: // diff --git a/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go b/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go index fd45979eeba..516d041dafd 100644 --- a/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go +++ b/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go @@ -29,7 +29,7 @@ import ( // Quantity is a fixed-point representation of a number. // It provides convenient marshaling/unmarshaling in JSON and YAML, -// in addition to String() and Int64() accessors. +// in addition to String() and AsInt64() accessors. // // The serialization format is: //