Merge pull request #96124 from adtac/apf1ginkgo

e2e: add APF flowcontrol request drown-out test
This commit is contained in:
Kubernetes Prow Robot 2020-11-09 15:14:41 -08:00 committed by GitHub
commit c84c3c4858
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 224 additions and 4 deletions

View File

@ -436,6 +436,7 @@ package_group(
"//pkg/volume/util/operationexecutor",
"//staging/src/k8s.io/apiserver/pkg/admission/metrics",
"//staging/src/k8s.io/component-base/metrics/...",
"//test/e2e/apimachinery",
"//test/e2e_node",
"//test/integration/apiserver/flowcontrol",
"//test/integration/metrics",

View File

@ -103,6 +103,8 @@ go_library(
"//vendor/github.com/go-openapi/spec:go_default_library",
"//vendor/github.com/onsi/ginkgo:go_default_library",
"//vendor/github.com/onsi/gomega:go_default_library",
"//vendor/github.com/prometheus/common/expfmt:go_default_library",
"//vendor/github.com/prometheus/common/model:go_default_library",
"//vendor/github.com/stretchr/testify/assert:go_default_library",
"//vendor/k8s.io/kube-openapi/pkg/util:go_default_library",
"//vendor/k8s.io/kube-openapi/pkg/validation/spec:go_default_library",

View File

@ -17,18 +17,31 @@ limitations under the License.
package apimachinery
import (
"bytes"
"context"
"fmt"
"io"
"net/http"
"sync"
"sync/atomic"
"time"
"github.com/onsi/ginkgo"
"k8s.io/client-go/rest"
"github.com/prometheus/common/expfmt"
"github.com/prometheus/common/model"
flowcontrolv1alpha1 "k8s.io/api/flowcontrol/v1alpha1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/rest"
"k8s.io/kubernetes/test/e2e/framework"
)
var _ = SIGDescribe("[Feature:APIPriorityAndFairness] response header should present", func() {
const (
requestConcurrencyLimitMetricName = "apiserver_flowcontrol_request_concurrency_limit"
requestConcurrencyLimitMetricLabelName = "priorityLevel"
)
var _ = SIGDescribe("[Feature:APIPriorityAndFairness]", func() {
f := framework.NewDefaultFramework("flowschemas")
ginkgo.It("should ensure that requests can be classified by testing flow-schemas/priority-levels", func() {
@ -113,11 +126,158 @@ var _ = SIGDescribe("[Feature:APIPriorityAndFairness] response header should pre
}
})
ginkgo.It("should ensure that requests can't be drowned out", func() {
flowSchemaNamePrefix := "e2e-testing-flowschema"
priorityLevelNamePrefix := "e2e-testing-prioritylevel"
loadDuration := 10 * time.Second
type client struct {
username string
qps float64
priorityLevelName string
concurrencyMultiplier float64
concurrency int32
flowSchemaName string
matchingPrecedence int32
completedRequests int32
}
clients := []client{
// "elephant" refers to a client that creates requests at a much higher
// QPS than its counter-part and well above its concurrency share limit.
// In contrast, the mouse stays under its concurrency shares.
// Additionally, the "elephant" client also has a higher matching
// precedence for its flow schema.
{username: "elephant", qps: 100.0, concurrencyMultiplier: 2.0, matchingPrecedence: 999},
{username: "mouse", qps: 5.0, concurrencyMultiplier: 0.5, matchingPrecedence: 1000},
}
ginkgo.By("creating test priority levels and flow schemas")
for i := range clients {
clients[i].priorityLevelName = fmt.Sprintf("%s-%s", priorityLevelNamePrefix, clients[i].username)
framework.Logf("creating PriorityLevel %q", clients[i].priorityLevelName)
_, err := f.ClientSet.FlowcontrolV1alpha1().PriorityLevelConfigurations().Create(
context.TODO(),
&flowcontrolv1alpha1.PriorityLevelConfiguration{
ObjectMeta: metav1.ObjectMeta{
Name: clients[i].priorityLevelName,
},
Spec: flowcontrolv1alpha1.PriorityLevelConfigurationSpec{
Type: flowcontrolv1alpha1.PriorityLevelEnablementLimited,
Limited: &flowcontrolv1alpha1.LimitedPriorityLevelConfiguration{
AssuredConcurrencyShares: 1,
LimitResponse: flowcontrolv1alpha1.LimitResponse{
Type: flowcontrolv1alpha1.LimitResponseTypeReject,
},
},
},
},
metav1.CreateOptions{})
framework.ExpectNoError(err)
defer func(name string) {
framework.ExpectNoError(f.ClientSet.FlowcontrolV1alpha1().PriorityLevelConfigurations().Delete(context.TODO(), name, metav1.DeleteOptions{}))
}(clients[i].priorityLevelName)
clients[i].flowSchemaName = fmt.Sprintf("%s-%s", flowSchemaNamePrefix, clients[i].username)
framework.Logf("creating FlowSchema %q", clients[i].flowSchemaName)
_, err = f.ClientSet.FlowcontrolV1alpha1().FlowSchemas().Create(
context.TODO(),
&flowcontrolv1alpha1.FlowSchema{
ObjectMeta: metav1.ObjectMeta{
Name: clients[i].flowSchemaName,
},
Spec: flowcontrolv1alpha1.FlowSchemaSpec{
MatchingPrecedence: clients[i].matchingPrecedence,
PriorityLevelConfiguration: flowcontrolv1alpha1.PriorityLevelConfigurationReference{
Name: clients[i].priorityLevelName,
},
DistinguisherMethod: &flowcontrolv1alpha1.FlowDistinguisherMethod{
Type: flowcontrolv1alpha1.FlowDistinguisherMethodByUserType,
},
Rules: []flowcontrolv1alpha1.PolicyRulesWithSubjects{
{
Subjects: []flowcontrolv1alpha1.Subject{
{
Kind: flowcontrolv1alpha1.SubjectKindUser,
User: &flowcontrolv1alpha1.UserSubject{
Name: clients[i].username,
},
},
},
NonResourceRules: []flowcontrolv1alpha1.NonResourcePolicyRule{
{
Verbs: []string{flowcontrolv1alpha1.VerbAll},
NonResourceURLs: []string{flowcontrolv1alpha1.NonResourceAll},
},
},
},
},
},
},
metav1.CreateOptions{})
framework.ExpectNoError(err)
defer func(name string) {
framework.ExpectNoError(f.ClientSet.FlowcontrolV1alpha1().FlowSchemas().Delete(context.TODO(), name, metav1.DeleteOptions{}))
}(clients[i].flowSchemaName)
}
ginkgo.By("getting request concurrency from metrics")
for i := range clients {
resp, err := f.ClientSet.CoreV1().RESTClient().Get().RequestURI("/metrics").DoRaw(context.TODO())
framework.ExpectNoError(err)
sampleDecoder := expfmt.SampleDecoder{
Dec: expfmt.NewDecoder(bytes.NewBuffer(resp), expfmt.FmtText),
Opts: &expfmt.DecodeOptions{},
}
for {
var v model.Vector
err := sampleDecoder.Decode(&v)
if err == io.EOF {
break
}
framework.ExpectNoError(err)
for _, metric := range v {
if string(metric.Metric[model.MetricNameLabel]) != requestConcurrencyLimitMetricName {
continue
}
if string(metric.Metric[requestConcurrencyLimitMetricLabelName]) != clients[i].priorityLevelName {
continue
}
clients[i].concurrency = int32(float64(metric.Value) * clients[i].concurrencyMultiplier)
if clients[i].concurrency < 1 {
clients[i].concurrency = 1
}
framework.Logf("request concurrency for %q will be %d (concurrency share = %d)", clients[i].username, clients[i].concurrency, int32(metric.Value))
}
}
}
ginkgo.By(fmt.Sprintf("starting uniform QPS load for %s", loadDuration.String()))
var wg sync.WaitGroup
for i := range clients {
wg.Add(1)
go func(c *client) {
defer wg.Done()
framework.Logf("starting uniform QPS load for %q: concurrency=%d, qps=%.1f", c.username, c.concurrency, c.qps)
c.completedRequests = uniformQPSLoadConcurrent(f, c.username, c.concurrency, c.qps, loadDuration)
}(&clients[i])
}
wg.Wait()
ginkgo.By("checking completed requests with expected values")
for _, client := range clients {
// Each client should have 95% of its ideal number of completed requests.
maxCompletedRequests := float64(client.concurrency) * client.qps * float64(loadDuration/time.Second)
fractionCompleted := float64(client.completedRequests) / maxCompletedRequests
framework.Logf("client %q completed %d/%d requests (%.1f%%)", client.username, client.completedRequests, int32(maxCompletedRequests), 100*fractionCompleted)
if fractionCompleted < 0.95 {
framework.Failf("client %q: got %.1f%% completed requests, want at least 95%%", client.username, 100*fractionCompleted)
}
}
})
})
func testResponseHeaderMatches(f *framework.Framework, impersonatingUser, plUID, fsUID string) bool {
// makeRequests creates a request to the API server and returns the response.
func makeRequest(f *framework.Framework, username string) *http.Response {
config := rest.CopyConfig(f.ClientConfig())
config.Impersonate.UserName = impersonatingUser
config.Impersonate.UserName = username
roundTripper, err := rest.TransportFor(config)
framework.ExpectNoError(err)
@ -126,7 +286,11 @@ func testResponseHeaderMatches(f *framework.Framework, impersonatingUser, plUID,
response, err := roundTripper.RoundTrip(req)
framework.ExpectNoError(err)
return response
}
func testResponseHeaderMatches(f *framework.Framework, impersonatingUser, plUID, fsUID string) bool {
response := makeRequest(f, impersonatingUser)
if response.Header.Get(flowcontrolv1alpha1.ResponseHeaderMatchedFlowSchemaUID) != fsUID {
return false
}
@ -135,3 +299,56 @@ func testResponseHeaderMatches(f *framework.Framework, impersonatingUser, plUID,
}
return true
}
// uniformQPSLoadSingle loads the API server with requests at a uniform <qps>
// for <loadDuration> time. The number of successfully completed requests is
// returned.
func uniformQPSLoadSingle(f *framework.Framework, username string, qps float64, loadDuration time.Duration) int32 {
var completed int32
var wg sync.WaitGroup
ticker := time.NewTicker(time.Duration(1e9/qps) * time.Nanosecond)
defer ticker.Stop()
timer := time.NewTimer(loadDuration)
for {
select {
case <-ticker.C:
wg.Add(1)
// Each request will have a non-zero latency. In addition, there may be
// multiple concurrent requests in-flight. As a result, a request may
// take longer than the time between two different consecutive ticks
// regardless of whether a requests is accepted or rejected. For example,
// in cases with clients making requests far above their concurrency
// share, with little time between consecutive requests, due to limited
// concurrency, newer requests will be enqueued until older ones
// complete. Hence the synchronisation with sync.WaitGroup.
go func() {
defer wg.Done()
makeRequest(f, username)
atomic.AddInt32(&completed, 1)
}()
case <-timer.C:
// Still in-flight requests should not contribute to the completed count.
totalCompleted := atomic.LoadInt32(&completed)
wg.Wait() // do not leak goroutines
return totalCompleted
}
}
}
// uniformQPSLoadConcurrent loads the API server with a <concurrency> number of
// clients impersonating to be <username>, each creating requests at a uniform
// rate defined by <qps>. The sum of number of successfully completed requests
// across all concurrent clients is returned.
func uniformQPSLoadConcurrent(f *framework.Framework, username string, concurrency int32, qps float64, loadDuration time.Duration) int32 {
var completed int32
var wg sync.WaitGroup
wg.Add(int(concurrency))
for i := int32(0); i < concurrency; i++ {
go func() {
defer wg.Done()
atomic.AddInt32(&completed, uniformQPSLoadSingle(f, username, qps, loadDuration))
}()
}
wg.Wait()
return atomic.LoadInt32(&completed)
}