client-go: support waiting for SharedInformerFactory shutdown

SharedInformerFactory starts goroutines in Start and those can be stopped by
closing the stop channel. However, there was no API that waits for the
goroutines.

This is a problem for unit testing. A test has to return while the informers
are still running, which may get flagged by tools like
https://github.com/uber-go/goleak or by klog/ktesting when those informers
lead to log output.

While at it, more documentation gets added to address
https://github.com/kubernetes/kubernetes/issues/65036.
This commit is contained in:
Patrick Ohly 2022-09-01 13:46:08 +02:00
parent baf6014e0c
commit e89d1d47e8
12 changed files with 908 additions and 55 deletions

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Cr() cr.Interface
}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client clientset.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Apiextensions() apiextensions.Interface
}

View File

@ -64,6 +64,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -124,20 +129,39 @@ func NewSharedInformerFactoryWithOptions(client kubernetes.Interface, defaultRes
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -184,11 +208,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Admissionregistration() admissionregistration.Interface
Internal() apiserverinternal.Interface
Apps() apps.Interface

View File

@ -114,6 +114,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[{{.reflectType|raw}}]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -174,20 +179,40 @@ func NewSharedInformerFactoryWithOptions(client {{.clientSetInterface|raw}}, def
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
f.lock.Lock()
defer f.lock.Unlock()
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.startedInformers[informerType] = true
}
}
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func()map[reflect.Type]cache.SharedIndexInformer{
f.lock.Lock()
@ -237,11 +262,58 @@ func (f *sharedInformerFactory) InformerFor(obj {{.runtimeObject|raw}}, newFunc
var sharedInformerFactoryInterface = `
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
{{.informerFactoryInterface|raw}}
ForResource(resource {{.schemaGroupVersionResource|raw}}) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource {{.schemaGroupVersionResource|raw}}) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj {{.runtimeObject|raw}}, newFunc {{.interfacesNewInformerFunc|raw}}) {{.cacheSharedIndexInformer|raw}}
{{$gvInterfaces := .gvInterfaces}}
{{$gvGoNames := .gvGoNames}}
{{range $groupName, $group := .groupVersions}}{{index $gvGoNames $groupName}}() {{index $gvInterfaces $groupName|raw}}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
ExampleGroup() example.Interface
}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Example() example.Interface
}

View File

@ -49,6 +49,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -109,20 +114,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -169,11 +193,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Example() example.Interface
SecondExample() example2.Interface
ThirdExample() example3io.Interface

View File

@ -49,6 +49,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -109,20 +114,39 @@ func NewSharedInformerFactoryWithOptions(client internalversion.Interface, defau
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -169,11 +193,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Example() example.Interface
SecondExample() example2.Interface
ThirdExample() example3io.Interface

View File

@ -48,6 +48,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -108,20 +113,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -168,11 +192,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Example() example.Interface
SecondExample() example2.Interface
}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client clientset.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Apiregistration() apiregistration.Interface
}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Wardle() wardle.Interface
}

View File

@ -47,6 +47,11 @@ type sharedInformerFactory struct {
// startedInformers is used for tracking which informers have been started.
// This allows Start() to be called multiple times safely.
startedInformers map[reflect.Type]bool
// wg tracks how many goroutines were started.
wg sync.WaitGroup
// shuttingDown is true when Shutdown has been called. It may still be running
// because it needs to wait for goroutines.
shuttingDown bool
}
// WithCustomResyncConfig sets a custom resync period for the specified informer types.
@ -107,20 +112,39 @@ func NewSharedInformerFactoryWithOptions(client versioned.Interface, defaultResy
return factory
}
// Start initializes all requested informers.
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
f.lock.Lock()
defer f.lock.Unlock()
if f.shuttingDown {
return
}
for informerType, informer := range f.informers {
if !f.startedInformers[informerType] {
go informer.Run(stopCh)
f.wg.Add(1)
// We need a new variable in each loop iteration,
// otherwise the goroutine would use the loop variable
// and that keeps changing.
informer := informer
go func() {
defer f.wg.Done()
informer.Run(stopCh)
}()
f.startedInformers[informerType] = true
}
}
}
// WaitForCacheSync waits for all started informers' cache were synced.
func (f *sharedInformerFactory) Shutdown() {
f.lock.Lock()
f.shuttingDown = true
f.lock.Unlock()
// Will return immediately if there is nothing to wait for.
f.wg.Wait()
}
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
informers := func() map[reflect.Type]cache.SharedIndexInformer {
f.lock.Lock()
@ -167,11 +191,58 @@ func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internal
// SharedInformerFactory provides shared informers for resources in all known
// API group versions.
//
// It is typically used like this:
//
// ctx, cancel := context.Background()
// defer cancel()
// factory := NewSharedInformerFactory(client, resyncPeriod)
// defer factory.WaitForStop() // Returns immediately if nothing was started.
// genericInformer := factory.ForResource(resource)
// typedInformer := factory.SomeAPIGroup().V1().SomeType()
// factory.Start(ctx.Done()) // Start processing these informers.
// synced := factory.WaitForCacheSync(ctx.Done())
// for v, ok := range synced {
// if !ok {
// fmt.Fprintf(os.Stderr, "caches failed to sync: %v", v)
// return
// }
// }
//
// // Creating informers can also be created after Start, but then
// // Start must be called again:
// anotherGenericInformer := factory.ForResource(resource)
// factory.Start(ctx.Done())
type SharedInformerFactory interface {
internalinterfaces.SharedInformerFactory
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// Start initializes all requested informers. They are handled in goroutines
// which run until the stop channel gets closed.
Start(stopCh <-chan struct{})
// Shutdown marks a factory as shutting down. At that point no new
// informers can be started anymore and Start will return without
// doing anything.
//
// In addition, Shutdown blocks until all goroutines have terminated. For that
// to happen, the close channel(s) that they were started with must be closed,
// either before Shutdown gets called or while it is waiting.
//
// Shutdown may be called multiple times, even concurrently. All such calls will
// block until all goroutines have terminated.
Shutdown()
// WaitForCacheSync blocks until all started informers' caches were synced
// or the stop channel gets closed.
WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool
// ForResource gives generic access to a shared informer of the matching type.
ForResource(resource schema.GroupVersionResource) (GenericInformer, error)
// InternalInformerFor returns the SharedIndexInformer for obj using an internal
// client.
InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer
Samplecontroller() samplecontroller.Interface
}