mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-07-23 03:41:45 +00:00
EvenPodsSpread: Core Priority logic
This commit is contained in:
parent
eefc18a763
commit
f25cc921e1
@ -15,3 +15,196 @@ limitations under the License.
|
||||
*/
|
||||
|
||||
package priorities
|
||||
|
||||
import (
|
||||
"context"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
|
||||
"k8s.io/api/core/v1"
|
||||
"k8s.io/apimachinery/pkg/labels"
|
||||
"k8s.io/client-go/util/workqueue"
|
||||
"k8s.io/kubernetes/pkg/scheduler/algorithm/predicates"
|
||||
schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
|
||||
schedulernodeinfo "k8s.io/kubernetes/pkg/scheduler/nodeinfo"
|
||||
|
||||
"k8s.io/klog"
|
||||
)
|
||||
|
||||
type topologyPair struct {
|
||||
key string
|
||||
value string
|
||||
}
|
||||
|
||||
type topologySpreadConstrantsMap struct {
|
||||
// The first error that we faced.
|
||||
firstError error
|
||||
sync.Mutex
|
||||
|
||||
// counts store the mapping from node name to so-far computed score of
|
||||
// the node.
|
||||
counts map[string]*int64
|
||||
// total number of matching pods on each qualified <topologyKey:value> pair
|
||||
total int64
|
||||
// topologyPairToNodeNames store the mapping from potential <topologyKey:value>
|
||||
// pair to node names
|
||||
topologyPairToNodeNames map[topologyPair][]string
|
||||
}
|
||||
|
||||
func newTopologySpreadConstrantsMap(len int) *topologySpreadConstrantsMap {
|
||||
return &topologySpreadConstrantsMap{
|
||||
counts: make(map[string]*int64, len),
|
||||
topologyPairToNodeNames: make(map[topologyPair][]string),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *topologySpreadConstrantsMap) setError(err error) {
|
||||
t.Lock()
|
||||
if t.firstError == nil {
|
||||
t.firstError = err
|
||||
}
|
||||
t.Unlock()
|
||||
}
|
||||
|
||||
func (t *topologySpreadConstrantsMap) initialize(pod *v1.Pod, nodes []*v1.Node) {
|
||||
constraints := getSoftTopologySpreadConstraints(pod)
|
||||
for _, node := range nodes {
|
||||
labelSet := labels.Set(node.Labels)
|
||||
allMatch := true
|
||||
var pairs []topologyPair
|
||||
for _, constraint := range constraints {
|
||||
tpKey := constraint.TopologyKey
|
||||
if !labelSet.Has(tpKey) {
|
||||
allMatch = false
|
||||
break
|
||||
}
|
||||
pairs = append(pairs, topologyPair{key: tpKey, value: node.Labels[tpKey]})
|
||||
}
|
||||
if allMatch {
|
||||
for _, pair := range pairs {
|
||||
t.topologyPairToNodeNames[pair] = append(t.topologyPairToNodeNames[pair], node.Name)
|
||||
}
|
||||
t.counts[node.Name] = new(int64)
|
||||
}
|
||||
// for those nodes which don't have all required topologyKeys present, it's intentional to
|
||||
// leave counts[nodeName] as nil, so that we're able to score these nodes to 0 afterwards
|
||||
}
|
||||
}
|
||||
|
||||
// CalculateEvenPodsSpreadPriority computes a score by checking through the topologySpreadConstraints
|
||||
// that are with WhenUnsatifiable=ScheduleAnyway (a.k.a soft constraint).
|
||||
// For each node (not only "filtered" nodes by Predicates), it adds the number of matching pods
|
||||
// (all topologySpreadConstraints must be satified) as a "weight" to any "filtered" node
|
||||
// which has the <topologyKey:value> pair present.
|
||||
// Then the sumed "weight" are normalized to 0~10, and the node(s) with the highest score are
|
||||
// the most preferred.
|
||||
// Symmetry is not considered.
|
||||
func CalculateEvenPodsSpreadPriority(pod *v1.Pod, nodeNameToInfo map[string]*schedulernodeinfo.NodeInfo, nodes []*v1.Node) (schedulerapi.HostPriorityList, error) {
|
||||
nodesLen := len(nodes)
|
||||
result := make(schedulerapi.HostPriorityList, nodesLen)
|
||||
// if incoming pod doesn't have soft topology spread constraints, return
|
||||
constraints := getSoftTopologySpreadConstraints(pod)
|
||||
if len(constraints) == 0 {
|
||||
return result, nil
|
||||
}
|
||||
|
||||
t := newTopologySpreadConstrantsMap(len(nodes))
|
||||
t.initialize(pod, nodes)
|
||||
|
||||
allNodeNames := make([]string, 0, len(nodeNameToInfo))
|
||||
for name := range nodeNameToInfo {
|
||||
allNodeNames = append(allNodeNames, name)
|
||||
}
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
processNode := func(i int) {
|
||||
nodeInfo := nodeNameToInfo[allNodeNames[i]]
|
||||
if node := nodeInfo.Node(); node != nil {
|
||||
// (1) `node` should satisfy incoming pod's NodeSelector/NodeAffinity
|
||||
// (2) All topologyKeys need to be present in `node`
|
||||
if !predicates.PodMatchesNodeSelectorAndAffinityTerms(pod, node) ||
|
||||
!predicates.NodeLabelsMatchSpreadConstraints(node.Labels, constraints) {
|
||||
return
|
||||
}
|
||||
matchCount := 0
|
||||
for _, existingPod := range nodeInfo.Pods() {
|
||||
match, err := predicates.PodMatchesAllSpreadConstraints(existingPod, pod.Namespace, constraints)
|
||||
if err != nil {
|
||||
t.setError(err)
|
||||
cancel()
|
||||
return
|
||||
}
|
||||
if match {
|
||||
matchCount++
|
||||
}
|
||||
}
|
||||
// add matchCount up to EACH node which is at least in one topology domain
|
||||
// with current node
|
||||
for _, constraint := range constraints {
|
||||
tpKey := constraint.TopologyKey
|
||||
pair := topologyPair{key: tpKey, value: node.Labels[tpKey]}
|
||||
for _, nodeName := range t.topologyPairToNodeNames[pair] {
|
||||
atomic.AddInt64(t.counts[nodeName], int64(matchCount))
|
||||
atomic.AddInt64(&t.total, int64(matchCount))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
workqueue.ParallelizeUntil(ctx, 16, len(allNodeNames), processNode)
|
||||
if t.firstError != nil {
|
||||
return nil, t.firstError
|
||||
}
|
||||
|
||||
var maxCount, minCount int64
|
||||
for _, node := range nodes {
|
||||
if t.counts[node.Name] == nil {
|
||||
continue
|
||||
}
|
||||
// reverse
|
||||
count := t.total - *t.counts[node.Name]
|
||||
if count > maxCount {
|
||||
maxCount = count
|
||||
} else if count < minCount {
|
||||
minCount = count
|
||||
}
|
||||
t.counts[node.Name] = &count
|
||||
}
|
||||
// calculate final priority score for each node
|
||||
// TODO(Huang-Wei): in alpha version, we keep the formula as simple as possible.
|
||||
// current version ranks the nodes properly, but it doesn't take MaxSkew into
|
||||
// consideration, we may come up with a better formula in the future.
|
||||
maxMinDiff := maxCount - minCount
|
||||
for i := range nodes {
|
||||
node := nodes[i]
|
||||
result[i].Host = node.Name
|
||||
if t.counts[node.Name] == nil {
|
||||
result[i].Score = 0
|
||||
continue
|
||||
}
|
||||
if maxMinDiff == 0 {
|
||||
result[i].Score = schedulerapi.MaxPriority
|
||||
continue
|
||||
}
|
||||
fScore := float64(schedulerapi.MaxPriority) * (float64(*t.counts[node.Name]-minCount) / float64(maxMinDiff))
|
||||
// need to reverse b/c the more matching pods it has, the less qualified it is
|
||||
// result[i].Score = schedulerapi.MaxPriority - int(fScore)
|
||||
result[i].Score = int(fScore)
|
||||
if klog.V(10) {
|
||||
klog.Infof("%v -> %v: EvenPodsSpreadPriority, Score: (%d)", pod.Name, node.Name, int(fScore))
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// TODO(Huang-Wei): combine this with getHardTopologySpreadConstraints() in predicates package
|
||||
func getSoftTopologySpreadConstraints(pod *v1.Pod) (constraints []v1.TopologySpreadConstraint) {
|
||||
if pod != nil {
|
||||
for _, constraint := range pod.Spec.TopologySpreadConstraints {
|
||||
if constraint.WhenUnsatisfiable == v1.ScheduleAnyway {
|
||||
constraints = append(constraints, constraint)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
302
pkg/scheduler/algorithm/priorities/even_pods_spread_test.go
Normal file
302
pkg/scheduler/algorithm/priorities/even_pods_spread_test.go
Normal file
@ -0,0 +1,302 @@
|
||||
/*
|
||||
Copyright 2019 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package priorities
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"testing"
|
||||
|
||||
"k8s.io/api/core/v1"
|
||||
schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
|
||||
schedulernodeinfo "k8s.io/kubernetes/pkg/scheduler/nodeinfo"
|
||||
u "k8s.io/kubernetes/pkg/scheduler/util"
|
||||
)
|
||||
|
||||
func Test_topologySpreadConstrantsMap_initialize(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
pod *v1.Pod
|
||||
nodes []*v1.Node
|
||||
want map[topologyPair][]string
|
||||
}{
|
||||
{
|
||||
name: "normal case",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "zone", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("zone", "zone1").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("zone", "zone1").Label("node", "node-b").Obj(),
|
||||
u.MakeNode().Name("node-x").Label("zone", "zone2").Label("node", "node-x").Obj(),
|
||||
},
|
||||
want: map[topologyPair][]string{
|
||||
{key: "zone", value: "zone1"}: {"node-a", "node-b"},
|
||||
{key: "zone", value: "zone2"}: {"node-x"},
|
||||
{key: "node", value: "node-a"}: {"node-a"},
|
||||
{key: "node", value: "node-b"}: {"node-b"},
|
||||
{key: "node", value: "node-x"}: {"node-x"},
|
||||
},
|
||||
},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
tMap := newTopologySpreadConstrantsMap(len(tt.nodes))
|
||||
tMap.initialize(tt.pod, tt.nodes)
|
||||
if !reflect.DeepEqual(tMap.topologyPairToNodeNames, tt.want) {
|
||||
t.Errorf("initilize().topologyPairToNodeNames = %#v, want %#v", tMap.topologyPairToNodeNames, tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCalculateEvenPodsSpreadPriority(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
pod *v1.Pod
|
||||
existingPods []*v1.Pod
|
||||
nodes []*v1.Node
|
||||
failedNodes []*v1.Node // nodes + failedNodes = all nodes
|
||||
want schedulerapi.HostPriorityList
|
||||
}{
|
||||
// Explanation on the Legend:
|
||||
// a) X/Y means there are X matching pods on node1 and Y on node2, both nodes are candidates
|
||||
// (i.e. they have passed all predicates)
|
||||
// b) X/~Y~ means there are X matching pods on node1 and Y on node2, but node Y is NOT a candidate
|
||||
// c) X/?Y? means there are X matching pods on node1 and Y on node2, both nodes are candidates
|
||||
// but node2 either i) doesn't have all required topologyKeys present, or ii) doesn't match
|
||||
// incoming pod's nodeSelector/nodeAffinity
|
||||
{
|
||||
// if there is only one candidate node, it should be scored to 10
|
||||
name: "one constraint on node, no existing pods",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("node", "node-b").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 10},
|
||||
{Host: "node-b", Score: 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
// if there is only one candidate node, it should be scored to 10
|
||||
name: "one constraint on node, only one node is candidate",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("node", "node-a").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-b").Label("node", "node-b").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
// matching pods spread as 2/1/0/3, total = 6
|
||||
// after reversing, it's 4/5/6/3
|
||||
// so scores = 40/6, 50/6, 60/6, 30/6
|
||||
name: "one constraint on node, all 4 nodes are candidates",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-d1").Node("node-d").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-d2").Node("node-d").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-d3").Node("node-d").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("node", "node-b").Obj(),
|
||||
u.MakeNode().Name("node-c").Label("node", "node-c").Obj(),
|
||||
u.MakeNode().Name("node-d").Label("node", "node-d").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 6},
|
||||
{Host: "node-b", Score: 8},
|
||||
{Host: "node-c", Score: 10},
|
||||
{Host: "node-d", Score: 5},
|
||||
},
|
||||
},
|
||||
{
|
||||
// matching pods spread as 4/2/1/~3~, total = 4+2+1 = 7 (as node4 is not a candidate)
|
||||
// after reversing, it's 3/5/6
|
||||
// so scores = 30/6, 50/6, 60/6
|
||||
name: "one constraint on node, 3 out of 4 nodes are candidates",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a3").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a4").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b2").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-x1").Node("node-x").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y1").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y2").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y3").Node("node-y").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("node", "node-b").Obj(),
|
||||
u.MakeNode().Name("node-x").Label("node", "node-x").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-y").Label("node", "node-y").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 5},
|
||||
{Host: "node-b", Score: 8},
|
||||
{Host: "node-x", Score: 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
// matching pods spread as 4/?2?/1/~3~, total = 4+?+1 = 5 (as node2 is problematic)
|
||||
// after reversing, it's 1/?/4
|
||||
// so scores = 10/4, 0, 40/4
|
||||
name: "one constraint on node, 3 out of 4 nodes are candidates",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a3").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a4").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b2").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-x1").Node("node-x").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y1").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y2").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y3").Node("node-y").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("n", "node-b").Obj(), // label `n` doesn't match topologyKey
|
||||
u.MakeNode().Name("node-x").Label("node", "node-x").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-y").Label("node", "node-y").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 2},
|
||||
{Host: "node-b", Score: 0},
|
||||
{Host: "node-x", Score: 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
// matching pods spread as 4/2/1/~3~, total = 6+6+4 = 16 (as topologyKey is zone instead of node)
|
||||
// after reversing, it's 10/10/12
|
||||
// so scores = 100/12, 100/12, 120/12
|
||||
name: "one constraint on zone, 3 out of 4 nodes are candidates",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "zone", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a3").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a4").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b2").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-x1").Node("node-x").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y1").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y2").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y3").Node("node-y").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("zone", "zone1").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-b").Label("zone", "zone1").Label("node", "node-b").Obj(),
|
||||
u.MakeNode().Name("node-x").Label("zone", "zone2").Label("node", "node-x").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-y").Label("zone", "zone2").Label("node", "node-y").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 8},
|
||||
{Host: "node-b", Score: 8},
|
||||
{Host: "node-x", Score: 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
// matching pods spread as 2/~1~/2/~4~, total = 2+3 + 2+6 = 13 (zone and node should be both sumed up)
|
||||
// after reversing, it's 8/5
|
||||
// so scores = 80/8, 50/8
|
||||
name: "two constraint on zone and node, 2 out of 4 nodes are candidates",
|
||||
pod: u.MakePod().Name("p").Label("foo", "").
|
||||
SpreadConstraint(1, "zone", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
SpreadConstraint(1, "node", softSpread, u.MakeLabelSelector().Exists("foo").Obj()).
|
||||
Obj(),
|
||||
existingPods: []*v1.Pod{
|
||||
u.MakePod().Name("p-a1").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-a2").Node("node-a").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-b1").Node("node-b").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-x1").Node("node-x").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-x2").Node("node-x").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y1").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y2").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y3").Node("node-y").Label("foo", "").Obj(),
|
||||
u.MakePod().Name("p-y4").Node("node-y").Label("foo", "").Obj(),
|
||||
},
|
||||
nodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-a").Label("zone", "zone1").Label("node", "node-a").Obj(),
|
||||
u.MakeNode().Name("node-x").Label("zone", "zone2").Label("node", "node-x").Obj(),
|
||||
},
|
||||
failedNodes: []*v1.Node{
|
||||
u.MakeNode().Name("node-b").Label("zone", "zone1").Label("node", "node-b").Obj(),
|
||||
u.MakeNode().Name("node-y").Label("zone", "zone2").Label("node", "node-y").Obj(),
|
||||
},
|
||||
want: []schedulerapi.HostPriority{
|
||||
{Host: "node-a", Score: 10},
|
||||
{Host: "node-x", Score: 6},
|
||||
},
|
||||
},
|
||||
}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
allNodes := append([]*v1.Node{}, tt.nodes...)
|
||||
allNodes = append(allNodes, tt.failedNodes...)
|
||||
nodeNameToInfo := schedulernodeinfo.CreateNodeNameToInfoMap(tt.existingPods, allNodes)
|
||||
|
||||
got, _ := CalculateEvenPodsSpreadPriority(tt.pod, nodeNameToInfo, tt.nodes)
|
||||
if !reflect.DeepEqual(got, tt.want) {
|
||||
t.Errorf("CalculateEvenPodsSpreadPriority() = %#v, want %#v", got, tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
hardSpread = v1.DoNotSchedule
|
||||
softSpread = v1.ScheduleAnyway
|
||||
)
|
Loading…
Reference in New Issue
Block a user