They contain some nice-to-have improvements (for example, better printing of
errors with gomega/format.Object) but nothing that is critical right now.
"go mod tidy" was run manually in
staging/src/k8s.io/kms/internal/plugins/mock (https://github.com/kubernetes/kubernetes/pull/116613
not merged yet).
Add node e2e test to verify that static pods can be started after a
previous static pod with the same config temporarily failed termination.
The scenario is:
1. Static pod is started
2. Static pod is deleted
3. Static pod termination fails (internally `syncTerminatedPod` fails)
4. At later time, pod termination should succeed
5. New static pod with the same config is (re)-added
6. New static pod is expected to start successfully
To repro this scenario, setup a pod using a NFS mount. The NFS server is
stopped which will result in volumes failing to unmount and
`syncTerminatedPod` to fail. The NFS server is later started, allowing
the volume to unmount successfully.
xref:
1. https://github.com/kubernetes/kubernetes/pull/113145#issuecomment-1289587988
2. https://github.com/kubernetes/kubernetes/pull/113065
3. https://github.com/kubernetes/kubernetes/pull/113093
Signed-off-by: David Porter <david@porter.me>
All wrappers except for ExpectNoError are identical to their gomega
counterparts. The only advantage that they have is that their invocations are
shorter.
That advantage does not outweigh their disadvantages:
- cannot be used in combination with gomega.Eventually/Consistently
- not a full replacement for gomega, so we just end up using both
- don't support passing a stack offset and thus cannot be used in helper
functions
- ginkgolinter does not work for them, so sub-optimal calls like this one
are not reported:
framework.ExpectEqual(len(items), 0)
->
gomega.Expect(items).To(gomega.BeEmpty())
- developers try to make do with what's available in the framework, leading
to sub-optimal checks like this:
framework.ExpectEqual(true, strings.Contains(event.Message, expectedEventError), "Event error should indicate non-root policy caused container to not start")
->
gomega.Expect(event.Message).To(gomega.ContainSubstring(expectedEventError), "Event error should indicate non-root policy caused container to not start")
So let's remove these wrappers. As a first step they get marked as deprecated.
This enables stricter
linting (https://github.com/kubernetes/kubernetes/pull/109728), once enabled,
to report new code which uses them.
All of these issues were reported by https://github.com/nunnatsa/ginkgolinter.
Fixing these issues is useful (several expressions get simpler, using
framework.ExpectNoError is better because it has additional support for
failures) and a necessary step for enabling that linter in our golangci-lint
invocation.
- test/e2e/framework/*.go should have very minimal dependencies.
We can enforce that via import-boss.
- What each test/e2e/framework/* sub-package uses is less relevant,
although ideally it also should be as minimal as possible in each case.
Enforcing this via import-boss ensures that new dependencies get flagged as
problem and thus will get additional scrutiny. It might be okay to add them,
but it needs to be considered.
The previous approach was based on the observation that some Prow jobs use the
--report-dir parameter instead of the E2E_REPORT_DIR env variable. Parsing the
command line was necessary to use the --json-report and --junit-report
parameters.
But that is complex and can be avoided by triggering the creation of complete
reports in the E2E test suite. The paths are hard-coded and relative to the
report directory to keep the code simple.
There was a report that k8s-triage started processing more data after
6db4b741dd was merged. It's unclear whether
that was because of the new <report-dir>/ginkgo_report.xml file. To avoid
this potential problem, the reports are now in a "ginkgo" sub-directory.
While at it, error checking gets enhanced:
- Create directories at the start of
the suite and bail out early if that fails.
- *All* e2e suites using the framework do this, not just test/e2e.
- Added missing error checking of truncated JUnit report writing.
The recently introduced failure handling in ExpectNoError depends on error
wrapping: if an error prefix gets added with `fmt.Errorf("foo: %v", err)`, then
ExpectNoError cannot detect that the root cause is an assertion failure and
then will add another useless "unexpected error" prefix and will not dump the
additional failure information (currently the backtrace inside the E2E
framework).
Instead of manually deciding on a case-by-case basis where %w is needed, all
error wrapping was updated automatically with
sed -i "s/fmt.Errorf\(.*\): '*\(%s\|%v\)'*\",\(.* err)\)/fmt.Errorf\1: %w\",\3/" $(git grep -l 'fmt.Errorf' test/e2e*)
This may be unnecessary in some cases, but it's not wrong.
Instead of pod responses being printed to the log each time polling fails, we
get a consolidated failure message with all unexpected pod responses if (and
only if) the check times out or a progress report gets produced.
This renames PodsResponding to WaitForPodsResponding for the sake of
consistency and adds a timeout parameter. That is necessary because some other
users of NewProxyResponseChecker used a much lower timeout (2min vs. 15min).
Besides simplifying some code, it also makes it easier to rewrite
ProxyResponseChecker because it only gets used in WaitForPodsResponding.
WaitForPodToDisappear was always called such that it listed all pods, which
made it less efficient than trying to get just the one pod it was checking for.
Being able to customize the poll interval in practice wasn't useful, therefore
it can be replaced with WaitForPodNotFoundInNamespace.
WaitForPods is now a generic function which lists pods and then checks the pods
that it found against some provided condition. A parameter determines how many
pods must be found resp. match the condition for the check to succeed.
The code becomes simpler (78 insertions, 91 deletions), easier to read (all
code entirely inside WaitForPodsRunningReady, no need to declare and later
overwrite variables) and possibly more correct (if all API calls failed,
the resulting error was ignored when allowedNotReadyPods > 0).
None of the users of the functions passed anything other than nil or an empty
map and the implementation ignore the parameter - it seems like a candidate for
simplification.
When a Gomega failure is converted to an error, the stack at the time when the
failure occurs may be useful: error wrapping provides some bread crumbs that
can be followed to determine where the failure really occurred, but error
wrapping may be missing or ambiguous.
To provide the additional information, a FailureError now includes a full stack
backtrace. The backtrace intentionally makes no attempt to exclude framework
functions besides the gomega support itself because helpers like
e2e/framework/pod may be relevant.
That backtrace is not included in the failure message for the sake of
brevity. Instead, it gets logged as part of the test's output.
gomega.Eventually provides better progress reports: instead of filling up the
log with rather useless one-line messages that are not enough to to understand
the current state, it integrates with Gingko's progress reporting (SIGUSR1,
--poll-progress-after) and then dumps the same complete failure message as
after a timeout. That makes it possible to understand why progress isn't
getting made without having to wait for the timeout.
The other advantage is that the failure message for some unexpected pod state
becomes more readable: instead of encapsulating it as "observed object" inside
an error, it directly gets rendered by gomega.
Calling gomega.Expect/Eventually/Consistently deep inside a helper call chain
has several challenges:
- the stack offset must be tracked correctly, otherwise the callstack
for the failure starts at some helper code, which is often not informative
- augmenting the failure message with additional information from each
caller implies that each caller must pass down a string and/or format
string plus arguments
Both challenges can be solved by returning errors:
- the stacktrace is taken at that level where the error is
treated as a failure instead of passing back an error, i.e.
inside the It callback
- traditional error wrapping can add additional information, if
desirable
What was missing was some easy way to generate an error via a gomega
assertion. The new infrastructure achieves that by mirroring the
Gomega/Assertion/AsyncAssertion interfaces with errors as return values instead
of calling a fail handler.
It is intentionally less flexible than the gomega APIs:
- A context must be passed to Eventually/Consistently as first
parameter because that is needed for proper timeout handling.
- No additional text can be added to the failure through this
API because error wrapping is meant to be used for this.
- No need to adjust the callstack offset because no backtrace
is recorded when a failure occurs.
To avoid the useless "unexpected error" log message when passing back a gomega
failure, ExpectNoError gets extended to recognize such errors and then skips
the logging.