This is useful to see whether pod scheduling happens in bursts and how it
behaves over time, which is relevant in particular for dynamic resource
allocation where it may become harder at the end to find the node which still
has resources available.
Besides "pods scheduled" it's also useful to know how many attempts were
needed, so schedule_attempts_total also gets sampled and stored.
To visualize the result of one or more test runs, use:
gnuplot.sh *.dat
Having to schedule 4999 pods to simulate a "full" cluster is slow. Creating
claims and then allocating them more or less like the scheduler would when
scheduling pods is much faster and in practice has the same effect on the
dynamicresources plugin because it looks at claims, not pods.
This allows defining the "steady state" workloads with higher number of
devices ("claimsPerNode") again. This was prohibitively slow before.
The previous tests were based on scheduling pods until the cluster was
full. This is a valid scenario, but not necessarily realistic.
More realistic is how quickly the scheduler can schedule new pods when some
old pods finished running, in particular in a cluster that is properly
utilized (= almost full). To test this, pods must get created, scheduled, and
then immediately deleted. This can run for a certain period of time.
Scenarios with empty and full cluster have different scheduling rates. This was
previously visible for DRA because the 50% percentile of the scheduling
throughput was lower than the average, but one had to guess in which scenario
the throughput was lower. Now this can be measured for DRA with the new
SteadyStateClusterResourceClaimTemplateStructured test.
The metrics collector must watch pod events to figure out how many pods got
scheduled. Polling misses pods that already got deleted again. There seems to
be no relevant difference in the collected
metrics (SchedulingWithResourceClaimTemplateStructured/2000pods_200nodes, 6 repetitions):
│ before │ after │
│ SchedulingThroughput/Average │ SchedulingThroughput/Average vs base │
157.1 ± 0% 157.1 ± 0% ~ (p=0.329 n=6)
│ before │ after │
│ SchedulingThroughput/Perc50 │ SchedulingThroughput/Perc50 vs base │
48.99 ± 8% 47.52 ± 9% ~ (p=0.937 n=6)
│ before │ after │
│ SchedulingThroughput/Perc90 │ SchedulingThroughput/Perc90 vs base │
463.9 ± 16% 460.1 ± 13% ~ (p=0.818 n=6)
│ before │ after │
│ SchedulingThroughput/Perc95 │ SchedulingThroughput/Perc95 vs base │
463.9 ± 16% 460.1 ± 13% ~ (p=0.818 n=6)
│ before │ after │
│ SchedulingThroughput/Perc99 │ SchedulingThroughput/Perc99 vs base │
463.9 ± 16% 460.1 ± 13% ~ (p=0.818 n=6)
Before, the first error was reported, which typically was the "invalid op code"
error from the createAny operation:
scheduler_perf.go:900: parsing test cases error: error unmarshaling JSON: while decoding JSON: cannot unmarshal {"collectMetrics":true,"count":10,"duration":"30s","namespace":"test","opcode":"createPods","podTemplatePath":"config/dra/pod-with-claim-template.yaml","steadyState":true} into any known op type: invalid opcode "createPods"; expected "createAny"
Now the opcode is determined first, then decoding into exactly the matching operation is
tried and validated. Unknown fields are an error.
In the case above, decoding a string into time.Duration failed:
scheduler_test.go:29: parsing test cases error: error unmarshaling JSON: while decoding JSON: decoding {"collectMetrics":true,"count":10,"duration":"30s","namespace":"test","opcode":"createPods","podTemplatePath":"config/dra/pod-with-claim-template.yaml","steadyState":true} into *benchmark.createPodsOp: json: cannot unmarshal string into Go struct field createPodsOp.Duration of type time.Duration
Some typos:
scheduler_test.go:29: parsing test cases error: error unmarshaling JSON: while decoding JSON: unknown opcode "sleeep" in {"duration":"5s","opcode":"sleeep"}
scheduler_test.go:29: parsing test cases error: error unmarshaling JSON: while decoding JSON: decoding {"countParram":"$deletingPods","deletePodsPerSecond":50,"opcode":"createPods"} into *benchmark.createPodsOp: json: unknown field "countParram"
Real devices are likely to have a handful of attributes and (for GPUs) the
memory as capacity. Most keys will be driver specific, a few may eventually
have a domain (none standardized right now).
Reconfiguring the logging infrastructure with a per-test output file mimicks
the behavior of per-test output (log output captured only on failures) while
still using the normal logging code, which is important for benchmarking.
To enable this behavior, the ARTIFACT env variable must be set.
In the API, the effect of the feature gate is that alpha fields get dropped on
create. They get preserved during updates if already set. The
PodSchedulingContext registration is *not* restricted by the feature gate.
This enables deleting stale PodSchedulingContext objects after disabling
the feature gate.
The scheduler checks the new feature gate before setting up an informer for
PodSchedulingContext objects and when deciding whether it can schedule a
pod. If any claim depends on a control plane controller, the scheduler bails
out, leading to:
Status: Pending
...
Warning FailedScheduling 73s default-scheduler 0/1 nodes are available: resourceclaim depends on disabled DRAControlPlaneController feature. no new claims to deallocate, preemption: 0/1 nodes are available: 1 Preemption is not helpful for scheduling.
The rest of the changes prepare for testing the new feature separately from
"structured parameters". The goal is to have base "dra" jobs which just enable
and test those, then "classic-dra" jobs which add DRAControlPlaneController.
The structured parameter allocation logic was written from scratch in
staging/src/k8s.io/dynamic-resource-allocation/structured where it might be
useful for out-of-tree components.
Besides the new features (amount, admin access) and API it now supports
backtracking when the initial device selection doesn't lead to a complete
allocation of all claims.
Co-authored-by: Ed Bartosh <eduard.bartosh@intel.com>
Co-authored-by: John Belamaric <jbelamaric@google.com>
This is in preparation for revamping the resource.k8s.io completely. Because
there will be no support for transitioning from v1alpha2 to v1alpha3, the
roundtrip test data for that API in 1.29 and 1.30 gets removed.
Repeating the version in the import name of the API packages is not really
required. It was done for a while to support simpler grepping for usage of
alpha APIs, but there are better ways for that now. So during this transition,
"resourceapi" gets used instead of "resourcev1alpha3" and the version gets
dropped from informer and lister imports. The advantage is that the next bump
to v1beta1 will affect fewer source code lines.
Only source code where the version really matters (like API registration)
retains the versioned import.