As part of externalizing this function to the k8s.io/component-helpers repo,
this commit simplifies the function signature and makes its 2 helpers private
(nodeSelectorRequirementsAsSelector and nodeSelectorRequirementsAsFieldSelector).
Normally, the PV controller knows about the PVC that triggers the
creation of a PV before it sees the PV, because the PV controller must
set the volume.beta.kubernetes.io/storage-provisioner annotation that
tells an external provisioner to create the PV.
When restarting, the PV controller first syncs its caches, so that
case is also covered.
However, the creator of a PVC might decided to set that annotation
itself to speed up volume creation. While unusual, it's not forbidden
and thus part of the external Kubernetes API. Whether it makes sense
depends on the intentions of the user.
When that is done and there is heavy load, an external provisioner
might see the PVC and create a PV before the PV controller sees the
PVC. If the PV controller then encounters the PV before the PVC, it
incorrectly concludes that the PV needs to be deleted instead of being
bound.
The same issue occurred earlier for external binding and the existing
code for looking up a PVC in the cache or in the apiserver solves the
issue also for volume provisioning, it just needs to be enabled also
for PVs without the pv.kubernetes.io/bound-by-controller annotation.
we are missing tests that check the connectivity against services
that have backend pods with hostNetwork: true.
Because the tests run in parallel, it is possible that the pods used as
backends try to bind to the same port, and since all of them use the
host network, the scheduler will fail to create them due to port conflicts,
so we run them serially.
We have to skip networking tests with udp and endpoints using
hostNetwork, because they have a known issue.
NetworkingTest is used to test different network scenarios.
Since new capabilites and scenarios are added, like SCTP or HostNetwork
for pods, we need a way to configure it with minimum disruption and code
changes.
Go idiomatic way to achieve this is using functional options.
the e2e test container used for the "Networking Granular Checks: Services"
tests only needs to listen in one port to perform do network checks.
This port is unrelated to the other ports used in the test, so we may
use a different number to avoid possible conflicts.
* api: structure change
* api: defaulting, conversion, and validation
* [FIX] validation: auto remove second ip/family when service changes to SingleStack
* [FIX] api: defaulting, conversion, and validation
* api-server: clusterIPs alloc, printers, storage and strategy
* [FIX] clusterIPs default on read
* alloc: auto remove second ip/family when service changes to SingleStack
* api-server: repair loop handling for clusterIPs
* api-server: force kubernetes default service into single stack
* api-server: tie dualstack feature flag with endpoint feature flag
* controller-manager: feature flag, endpoint, and endpointSlice controllers handling multi family service
* [FIX] controller-manager: feature flag, endpoint, and endpointSlicecontrollers handling multi family service
* kube-proxy: feature-flag, utils, proxier, and meta proxier
* [FIX] kubeproxy: call both proxier at the same time
* kubenet: remove forced pod IP sorting
* kubectl: modify describe to include ClusterIPs, IPFamilies, and IPFamilyPolicy
* e2e: fix tests that depends on IPFamily field AND add dual stack tests
* e2e: fix expected error message for ClusterIP immutability
* add integration tests for dualstack
the third phase of dual stack is a very complex change in the API,
basically it introduces Dual Stack services. Main changes are:
- It pluralizes the Service IPFamily field to IPFamilies,
and removes the singular field.
- It introduces a new field IPFamilyPolicyType that can take
3 values to express the "dual-stack(mad)ness" of the cluster:
SingleStack, PreferDualStack and RequireDualStack
- It pluralizes ClusterIP to ClusterIPs.
The goal is to add coverage to the services API operations,
taking into account the 6 different modes a cluster can have:
- single stack: IP4 or IPv6 (as of today)
- dual stack: IPv4 only, IPv6 only, IPv4 - IPv6, IPv6 - IPv4
* [FIX] add integration tests for dualstack
* generated data
* generated files
Co-authored-by: Antonio Ojea <aojea@redhat.com>