getLocalDetector() used to pass a utiliptables.Interface to
NewDetectLocalByCIDR() so that NewDetectLocalByCIDR() could verify
that the passed-in CIDR was of the same family as the iptables
interface. It would make more sense for getLocalDetector() to verify
this itself and just *not call NewDetectLocalByCIDR* if the families
don't match, and that's what the code does now. So there's no longer
any need to pass the utiliptables.Interface to the local detector.
Since the single-stack and dual-stack local-detector-getters now have
the same behavior in terms of error-checking and dual-stack config, we
can just replace the contents of getDualStackLocalDetectorTuple() with
a pair of calls to getLocalDetector().
1. When bringing up a single-stack kube-proxy in a dual-stack cluster,
allow using either the primary or secondary IP family.
2. Since the earlier config-checking code will already have bailed out
if the single-stack configuration is unusably broken, we don't need to
do that here. Instead, just return a no-op local detector if there are
no usable CIDRs of the expected IP family.
Invalid flags are detected by flag parsing, but optional arguments are just
passed through to the E2E suites. None of them support any, so rejecting them
with an error message is useful because it helps catch typos (like a missing
hyphen before a flag).
perfdash expects all data items to have the same set of labels. It then
renders drop-down buttons for each label with all values found for each
label. Previously, data items that didn't have a label didn't match any label
filter in perfdash and couldn't get selected because perfdash doesn't have
"unset" in it's drop-down menus.
To avoid that, scheduler-perf now collects all labels and then adds missing
labels with "not applicable" as value:
{
"data": {
"Average": 939.7071223010004,
"Perc50": 927.7987421383649,
"Perc90": 2166.153846153846,
"Perc95": 2363.076923076923,
"Perc99": 2520.6153846153848
},
"unit": "ms",
"labels": {
"Metric": "scheduler_pod_scheduling_duration_seconds",
"Name": "SchedulingBasic/5000Nodes/namespace-2",
"extension_point": "not applicable",
"result": "not applicable"
}
},
...
{
"data": {
"Average": 1.1172570650000004,
"Perc50": 1.1418367346938776,
"Perc90": 1.5500000000000003,
"Perc95": 1.6410256410256412,
"Perc99": 3.7333333333333334
},
"unit": "ms",
"labels": {
"Metric": "scheduler_framework_extension_point_duration_seconds",
"Name": "SchedulingBasic/5000Nodes/namespace-2",
"extension_point": "Score",
"result": "not applicable"
}
},
Because the JSON file gets written at the end of the top-level benchmark, all
data items had `BenchmarkPerfScheduling/` as prefix in the `Name` label. This
is redundant and makes it harder to see the actual name. Now that common prefix
gets removed.
CreatePod and MakePod only accepted an `isPrivileged` boolean, which made it
impossible to write tests using those helpers which work in a default
framework.Framework, because the default there is LevelRestricted.
The simple boolean gets replaced with admissionapi.Level. Passing
LevelRestricted does the same as calling e2epod.MixinRestrictedPodSecurity.
Instead of explicitly passing a constant to these modified helpers, most tests
get updated to pass f.NamespacePodSecurityLevel. This has the advantage
that if that level gets lowered in the future, tests only need to be updated in
one place.
In some cases, helpers taking client+namespace+timeouts parameters get replaced
with passing the Framework instance to get access to
f.NamespacePodSecurityEnforceLevel. These helpers don't need separate
parameters because in practice all they ever used where the values from the
Framework instance.