mirror of
				https://github.com/k3s-io/kubernetes.git
				synced 2025-10-30 21:30:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1415 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1415 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
 | |
| // Use of this source code is governed by a MIT license found in the LICENSE file.
 | |
| 
 | |
| package codec
 | |
| 
 | |
| import (
 | |
| 	"bufio"
 | |
| 	"encoding"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"reflect"
 | |
| 	"sort"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
 | |
| 
 | |
| // AsSymbolFlag defines what should be encoded as symbols.
 | |
| type AsSymbolFlag uint8
 | |
| 
 | |
| const (
 | |
| 	// AsSymbolDefault is default.
 | |
| 	// Currently, this means only encode struct field names as symbols.
 | |
| 	// The default is subject to change.
 | |
| 	AsSymbolDefault AsSymbolFlag = iota
 | |
| 
 | |
| 	// AsSymbolAll means encode anything which could be a symbol as a symbol.
 | |
| 	AsSymbolAll = 0xfe
 | |
| 
 | |
| 	// AsSymbolNone means do not encode anything as a symbol.
 | |
| 	AsSymbolNone = 1 << iota
 | |
| 
 | |
| 	// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
 | |
| 	AsSymbolMapStringKeysFlag
 | |
| 
 | |
| 	// AsSymbolStructFieldName means encode struct field names as symbols.
 | |
| 	AsSymbolStructFieldNameFlag
 | |
| )
 | |
| 
 | |
| // encWriter abstracts writing to a byte array or to an io.Writer.
 | |
| type encWriter interface {
 | |
| 	writeb([]byte)
 | |
| 	writestr(string)
 | |
| 	writen1(byte)
 | |
| 	writen2(byte, byte)
 | |
| 	writen4(byte, byte, byte, byte)
 | |
| 	writen5(byte, byte, byte, byte, byte)
 | |
| 	atEndOfEncode()
 | |
| }
 | |
| 
 | |
| // encDriver abstracts the actual codec (binc vs msgpack, etc)
 | |
| type encDriver interface {
 | |
| 	// IsBuiltinType(rt uintptr) bool
 | |
| 	EncodeBuiltin(rt uintptr, v interface{})
 | |
| 	EncodeNil()
 | |
| 	EncodeInt(i int64)
 | |
| 	EncodeUint(i uint64)
 | |
| 	EncodeBool(b bool)
 | |
| 	EncodeFloat32(f float32)
 | |
| 	EncodeFloat64(f float64)
 | |
| 	// encodeExtPreamble(xtag byte, length int)
 | |
| 	EncodeRawExt(re *RawExt, e *Encoder)
 | |
| 	EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
 | |
| 	WriteArrayStart(length int)
 | |
| 	WriteArrayElem()
 | |
| 	WriteArrayEnd()
 | |
| 	WriteMapStart(length int)
 | |
| 	WriteMapElemKey()
 | |
| 	WriteMapElemValue()
 | |
| 	WriteMapEnd()
 | |
| 	EncodeString(c charEncoding, v string)
 | |
| 	EncodeSymbol(v string)
 | |
| 	EncodeStringBytes(c charEncoding, v []byte)
 | |
| 	//TODO
 | |
| 	//encBignum(f *big.Int)
 | |
| 	//encStringRunes(c charEncoding, v []rune)
 | |
| 
 | |
| 	reset()
 | |
| 	atEndOfEncode()
 | |
| }
 | |
| 
 | |
| type ioEncStringWriter interface {
 | |
| 	WriteString(s string) (n int, err error)
 | |
| }
 | |
| 
 | |
| type ioEncFlusher interface {
 | |
| 	Flush() error
 | |
| }
 | |
| 
 | |
| type encDriverAsis interface {
 | |
| 	EncodeAsis(v []byte)
 | |
| }
 | |
| 
 | |
| // type encNoSeparator struct{}
 | |
| // func (_ encNoSeparator) EncodeEnd() {}
 | |
| 
 | |
| type encDriverNoopContainerWriter struct{}
 | |
| 
 | |
| func (_ encDriverNoopContainerWriter) WriteArrayStart(length int) {}
 | |
| func (_ encDriverNoopContainerWriter) WriteArrayElem()            {}
 | |
| func (_ encDriverNoopContainerWriter) WriteArrayEnd()             {}
 | |
| func (_ encDriverNoopContainerWriter) WriteMapStart(length int)   {}
 | |
| func (_ encDriverNoopContainerWriter) WriteMapElemKey()           {}
 | |
| func (_ encDriverNoopContainerWriter) WriteMapElemValue()         {}
 | |
| func (_ encDriverNoopContainerWriter) WriteMapEnd()               {}
 | |
| func (_ encDriverNoopContainerWriter) atEndOfEncode()             {}
 | |
| 
 | |
| // type ioEncWriterWriter interface {
 | |
| // 	WriteByte(c byte) error
 | |
| // 	WriteString(s string) (n int, err error)
 | |
| // 	Write(p []byte) (n int, err error)
 | |
| // }
 | |
| 
 | |
| type EncodeOptions struct {
 | |
| 	// Encode a struct as an array, and not as a map
 | |
| 	StructToArray bool
 | |
| 
 | |
| 	// Canonical representation means that encoding a value will always result in the same
 | |
| 	// sequence of bytes.
 | |
| 	//
 | |
| 	// This only affects maps, as the iteration order for maps is random.
 | |
| 	//
 | |
| 	// The implementation MAY use the natural sort order for the map keys if possible:
 | |
| 	//
 | |
| 	//     - If there is a natural sort order (ie for number, bool, string or []byte keys),
 | |
| 	//       then the map keys are first sorted in natural order and then written
 | |
| 	//       with corresponding map values to the strema.
 | |
| 	//     - If there is no natural sort order, then the map keys will first be
 | |
| 	//       encoded into []byte, and then sorted,
 | |
| 	//       before writing the sorted keys and the corresponding map values to the stream.
 | |
| 	//
 | |
| 	Canonical bool
 | |
| 
 | |
| 	// CheckCircularRef controls whether we check for circular references
 | |
| 	// and error fast during an encode.
 | |
| 	//
 | |
| 	// If enabled, an error is received if a pointer to a struct
 | |
| 	// references itself either directly or through one of its fields (iteratively).
 | |
| 	//
 | |
| 	// This is opt-in, as there may be a performance hit to checking circular references.
 | |
| 	CheckCircularRef bool
 | |
| 
 | |
| 	// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
 | |
| 	// when checking if a value is empty.
 | |
| 	//
 | |
| 	// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
 | |
| 	RecursiveEmptyCheck bool
 | |
| 
 | |
| 	// Raw controls whether we encode Raw values.
 | |
| 	// This is a "dangerous" option and must be explicitly set.
 | |
| 	// If set, we blindly encode Raw values as-is, without checking
 | |
| 	// if they are a correct representation of a value in that format.
 | |
| 	// If unset, we error out.
 | |
| 	Raw bool
 | |
| 
 | |
| 	// AsSymbols defines what should be encoded as symbols.
 | |
| 	//
 | |
| 	// Encoding as symbols can reduce the encoded size significantly.
 | |
| 	//
 | |
| 	// However, during decoding, each string to be encoded as a symbol must
 | |
| 	// be checked to see if it has been seen before. Consequently, encoding time
 | |
| 	// will increase if using symbols, because string comparisons has a clear cost.
 | |
| 	//
 | |
| 	// Sample values:
 | |
| 	//   AsSymbolNone
 | |
| 	//   AsSymbolAll
 | |
| 	//   AsSymbolMapStringKeys
 | |
| 	//   AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
 | |
| 	AsSymbols AsSymbolFlag
 | |
| 
 | |
| 	// WriterBufferSize is the size of the buffer used when writing.
 | |
| 	//
 | |
| 	// if > 0, we use a smart buffer internally for performance purposes.
 | |
| 	WriterBufferSize int
 | |
| }
 | |
| 
 | |
| // ---------------------------------------------
 | |
| 
 | |
| type simpleIoEncWriter struct {
 | |
| 	io.Writer
 | |
| }
 | |
| 
 | |
| // type bufIoEncWriter struct {
 | |
| // 	w   io.Writer
 | |
| // 	buf []byte
 | |
| // 	err error
 | |
| // }
 | |
| 
 | |
| // func (x *bufIoEncWriter) Write(b []byte) (n int, err error) {
 | |
| // 	if x.err != nil {
 | |
| // 		return 0, x.err
 | |
| // 	}
 | |
| // 	if cap(x.buf)-len(x.buf) >= len(b) {
 | |
| // 		x.buf = append(x.buf, b)
 | |
| // 		return len(b), nil
 | |
| // 	}
 | |
| // 	n, err = x.w.Write(x.buf)
 | |
| // 	if err != nil {
 | |
| // 		x.err = err
 | |
| // 		return 0, x.err
 | |
| // 	}
 | |
| // 	n, err = x.w.Write(b)
 | |
| // 	x.err = err
 | |
| // 	return
 | |
| // }
 | |
| 
 | |
| // ioEncWriter implements encWriter and can write to an io.Writer implementation
 | |
| type ioEncWriter struct {
 | |
| 	w  io.Writer
 | |
| 	ww io.Writer
 | |
| 	bw io.ByteWriter
 | |
| 	sw ioEncStringWriter
 | |
| 	fw ioEncFlusher
 | |
| 	b  [8]byte
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) WriteByte(b byte) (err error) {
 | |
| 	// x.bs[0] = b
 | |
| 	// _, err = x.ww.Write(x.bs[:])
 | |
| 	z.b[0] = b
 | |
| 	_, err = z.w.Write(z.b[:1])
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) WriteString(s string) (n int, err error) {
 | |
| 	return z.w.Write(bytesView(s))
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writeb(bs []byte) {
 | |
| 	// if len(bs) == 0 {
 | |
| 	// 	return
 | |
| 	// }
 | |
| 	if _, err := z.ww.Write(bs); err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writestr(s string) {
 | |
| 	// if len(s) == 0 {
 | |
| 	// 	return
 | |
| 	// }
 | |
| 	if _, err := z.sw.WriteString(s); err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writen1(b byte) {
 | |
| 	if err := z.bw.WriteByte(b); err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writen2(b1, b2 byte) {
 | |
| 	var err error
 | |
| 	if err = z.bw.WriteByte(b1); err == nil {
 | |
| 		if err = z.bw.WriteByte(b2); err == nil {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	panic(err)
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writen4(b1, b2, b3, b4 byte) {
 | |
| 	z.b[0], z.b[1], z.b[2], z.b[3] = b1, b2, b3, b4
 | |
| 	if _, err := z.ww.Write(z.b[:4]); err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
 | |
| 	z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
 | |
| 	if _, err := z.ww.Write(z.b[:5]); err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z *ioEncWriter) atEndOfEncode() {
 | |
| 	if z.fw != nil {
 | |
| 		z.fw.Flush()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ----------------------------------------
 | |
| 
 | |
| // bytesEncWriter implements encWriter and can write to an byte slice.
 | |
| // It is used by Marshal function.
 | |
| type bytesEncWriter struct {
 | |
| 	b   []byte
 | |
| 	c   int     // cursor
 | |
| 	out *[]byte // write out on atEndOfEncode
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writeb(s []byte) {
 | |
| 	oc, a := z.growNoAlloc(len(s))
 | |
| 	if a {
 | |
| 		z.growAlloc(len(s), oc)
 | |
| 	}
 | |
| 	copy(z.b[oc:], s)
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writestr(s string) {
 | |
| 	oc, a := z.growNoAlloc(len(s))
 | |
| 	if a {
 | |
| 		z.growAlloc(len(s), oc)
 | |
| 	}
 | |
| 	copy(z.b[oc:], s)
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writen1(b1 byte) {
 | |
| 	oc, a := z.growNoAlloc(1)
 | |
| 	if a {
 | |
| 		z.growAlloc(1, oc)
 | |
| 	}
 | |
| 	z.b[oc] = b1
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writen2(b1, b2 byte) {
 | |
| 	oc, a := z.growNoAlloc(2)
 | |
| 	if a {
 | |
| 		z.growAlloc(2, oc)
 | |
| 	}
 | |
| 	z.b[oc+1] = b2
 | |
| 	z.b[oc] = b1
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writen4(b1, b2, b3, b4 byte) {
 | |
| 	oc, a := z.growNoAlloc(4)
 | |
| 	if a {
 | |
| 		z.growAlloc(4, oc)
 | |
| 	}
 | |
| 	z.b[oc+3] = b4
 | |
| 	z.b[oc+2] = b3
 | |
| 	z.b[oc+1] = b2
 | |
| 	z.b[oc] = b1
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
 | |
| 	oc, a := z.growNoAlloc(5)
 | |
| 	if a {
 | |
| 		z.growAlloc(5, oc)
 | |
| 	}
 | |
| 	z.b[oc+4] = b5
 | |
| 	z.b[oc+3] = b4
 | |
| 	z.b[oc+2] = b3
 | |
| 	z.b[oc+1] = b2
 | |
| 	z.b[oc] = b1
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) atEndOfEncode() {
 | |
| 	*(z.out) = z.b[:z.c]
 | |
| }
 | |
| 
 | |
| // have a growNoalloc(n int), which can be inlined.
 | |
| // if allocation is needed, then call growAlloc(n int)
 | |
| 
 | |
| func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
 | |
| 	oldcursor = z.c
 | |
| 	z.c = z.c + n
 | |
| 	if z.c > len(z.b) {
 | |
| 		if z.c > cap(z.b) {
 | |
| 			allocNeeded = true
 | |
| 		} else {
 | |
| 			z.b = z.b[:cap(z.b)]
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
 | |
| 	// appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
 | |
| 	// bytes.Buffer model (2*cap + n): much better
 | |
| 	// bs := make([]byte, 2*cap(z.b)+n)
 | |
| 	bs := make([]byte, growCap(cap(z.b), 1, n))
 | |
| 	copy(bs, z.b[:oldcursor])
 | |
| 	z.b = bs
 | |
| }
 | |
| 
 | |
| // ---------------------------------------------
 | |
| 
 | |
| func (e *Encoder) builtin(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeBuiltin(f.ti.rtid, rv2i(rv))
 | |
| }
 | |
| 
 | |
| func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.rawBytes(rv2i(rv).(Raw))
 | |
| }
 | |
| 
 | |
| func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// rev := rv2i(rv).(RawExt)
 | |
| 	// e.e.EncodeRawExt(&rev, e)
 | |
| 	var re *RawExt
 | |
| 	if rv.CanAddr() {
 | |
| 		re = rv2i(rv.Addr()).(*RawExt)
 | |
| 	} else {
 | |
| 		rev := rv2i(rv).(RawExt)
 | |
| 		re = &rev
 | |
| 	}
 | |
| 	e.e.EncodeRawExt(re, e)
 | |
| }
 | |
| 
 | |
| func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// if this is a struct|array and it was addressable, then pass the address directly (not the value)
 | |
| 	if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
 | |
| 		rv = rv.Addr()
 | |
| 	}
 | |
| 	e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
 | |
| }
 | |
| 
 | |
| func (e *Encoder) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
 | |
| 	if indir == 0 {
 | |
| 		v = rv2i(rv)
 | |
| 	} else if indir == -1 {
 | |
| 		// If a non-pointer was passed to Encode(), then that value is not addressable.
 | |
| 		// Take addr if addressable, else copy value to an addressable value.
 | |
| 		if rv.CanAddr() {
 | |
| 			v = rv2i(rv.Addr())
 | |
| 		} else {
 | |
| 			rv2 := reflect.New(rv.Type())
 | |
| 			rv2.Elem().Set(rv)
 | |
| 			v = rv2i(rv2)
 | |
| 		}
 | |
| 	} else {
 | |
| 		for j := int8(0); j < indir; j++ {
 | |
| 			if rv.IsNil() {
 | |
| 				e.e.EncodeNil()
 | |
| 				return
 | |
| 			}
 | |
| 			rv = rv.Elem()
 | |
| 		}
 | |
| 		v = rv2i(rv)
 | |
| 	}
 | |
| 	return v, true
 | |
| }
 | |
| 
 | |
| func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	if v, proceed := e.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
 | |
| 		v.(Selfer).CodecEncodeSelf(e)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	if v, proceed := e.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
 | |
| 		bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
 | |
| 		e.marshal(bs, fnerr, false, c_RAW)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	if v, proceed := e.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
 | |
| 		bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
 | |
| 		e.marshal(bs, fnerr, false, c_UTF8)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	if v, proceed := e.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
 | |
| 		bs, fnerr := v.(jsonMarshaler).MarshalJSON()
 | |
| 		e.marshal(bs, fnerr, true, c_UTF8)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeBool(rv.Bool())
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeString(c_UTF8, rv.String())
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeFloat64(rv.Float())
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeFloat32(float32(rv.Float()))
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(rv.Int())
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(rv.Uint())
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeNil()
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
 | |
| 	e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
 | |
| 	ti := f.ti
 | |
| 	ee := e.e
 | |
| 	// array may be non-addressable, so we have to manage with care
 | |
| 	//   (don't call rv.Bytes, rv.Slice, etc).
 | |
| 	// E.g. type struct S{B [2]byte};
 | |
| 	//   Encode(S{}) will bomb on "panic: slice of unaddressable array".
 | |
| 	if f.seq != seqTypeArray {
 | |
| 		if rv.IsNil() {
 | |
| 			ee.EncodeNil()
 | |
| 			return
 | |
| 		}
 | |
| 		// If in this method, then there was no extension function defined.
 | |
| 		// So it's okay to treat as []byte.
 | |
| 		if ti.rtid == uint8SliceTypId {
 | |
| 			ee.EncodeStringBytes(c_RAW, rv.Bytes())
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	elemsep := e.hh.hasElemSeparators()
 | |
| 	rtelem := ti.rt.Elem()
 | |
| 	l := rv.Len()
 | |
| 	if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
 | |
| 		switch f.seq {
 | |
| 		case seqTypeArray:
 | |
| 			if rv.CanAddr() {
 | |
| 				ee.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
 | |
| 			} else {
 | |
| 				var bs []byte
 | |
| 				if l <= cap(e.b) {
 | |
| 					bs = e.b[:l]
 | |
| 				} else {
 | |
| 					bs = make([]byte, l)
 | |
| 				}
 | |
| 				reflect.Copy(reflect.ValueOf(bs), rv)
 | |
| 				ee.EncodeStringBytes(c_RAW, bs)
 | |
| 			}
 | |
| 			return
 | |
| 		case seqTypeSlice:
 | |
| 			ee.EncodeStringBytes(c_RAW, rv.Bytes())
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	if ti.rtid == uint8SliceTypId && f.seq == seqTypeChan {
 | |
| 		bs := e.b[:0]
 | |
| 		// do not use range, so that the number of elements encoded
 | |
| 		// does not change, and encoding does not hang waiting on someone to close chan.
 | |
| 		// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
 | |
| 		ch := rv2i(rv).(<-chan byte)
 | |
| 		for i := 0; i < l; i++ {
 | |
| 			bs = append(bs, <-ch)
 | |
| 		}
 | |
| 		ee.EncodeStringBytes(c_RAW, bs)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if ti.mbs {
 | |
| 		if l%2 == 1 {
 | |
| 			e.errorf("mapBySlice requires even slice length, but got %v", l)
 | |
| 			return
 | |
| 		}
 | |
| 		ee.WriteMapStart(l / 2)
 | |
| 	} else {
 | |
| 		ee.WriteArrayStart(l)
 | |
| 	}
 | |
| 
 | |
| 	if l > 0 {
 | |
| 		var fn *codecFn
 | |
| 		var recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rtelem))
 | |
| 		if !recognizedVtyp {
 | |
| 			for rtelem.Kind() == reflect.Ptr {
 | |
| 				rtelem = rtelem.Elem()
 | |
| 			}
 | |
| 			// if kind is reflect.Interface, do not pre-determine the
 | |
| 			// encoding type, because preEncodeValue may break it down to
 | |
| 			// a concrete type and kInterface will bomb.
 | |
| 			if rtelem.Kind() != reflect.Interface {
 | |
| 				fn = e.cf.get(rtelem, true, true)
 | |
| 			}
 | |
| 		}
 | |
| 		// TODO: Consider perf implication of encoding odd index values as symbols if type is string
 | |
| 		for j := 0; j < l; j++ {
 | |
| 			if elemsep {
 | |
| 				if ti.mbs {
 | |
| 					if j%2 == 0 {
 | |
| 						ee.WriteMapElemKey()
 | |
| 					} else {
 | |
| 						ee.WriteMapElemValue()
 | |
| 					}
 | |
| 				} else {
 | |
| 					ee.WriteArrayElem()
 | |
| 				}
 | |
| 			}
 | |
| 			if f.seq == seqTypeChan {
 | |
| 				if rv2, ok2 := rv.Recv(); ok2 {
 | |
| 					if useLookupRecognizedTypes && recognizedVtyp {
 | |
| 						e.encode(rv2i(rv2))
 | |
| 					} else {
 | |
| 						e.encodeValue(rv2, fn, true)
 | |
| 					}
 | |
| 				} else {
 | |
| 					ee.EncodeNil() // WE HAVE TO DO SOMETHING, so nil if nothing received.
 | |
| 				}
 | |
| 			} else {
 | |
| 				if useLookupRecognizedTypes && recognizedVtyp {
 | |
| 					e.encode(rv2i(rv.Index(j)))
 | |
| 				} else {
 | |
| 					e.encodeValue(rv.Index(j), fn, true)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ti.mbs {
 | |
| 		ee.WriteMapEnd()
 | |
| 	} else {
 | |
| 		ee.WriteArrayEnd()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
 | |
| 	fti := f.ti
 | |
| 	elemsep := e.hh.hasElemSeparators()
 | |
| 	tisfi := fti.sfip
 | |
| 	toMap := !(fti.toArray || e.h.StructToArray)
 | |
| 	if toMap {
 | |
| 		tisfi = fti.sfi
 | |
| 	}
 | |
| 	ee := e.e
 | |
| 
 | |
| 	sfn := structFieldNode{v: rv, update: false}
 | |
| 	if toMap {
 | |
| 		ee.WriteMapStart(len(tisfi))
 | |
| 		// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
 | |
| 		asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
 | |
| 		if !elemsep {
 | |
| 			for _, si := range tisfi {
 | |
| 				if asSymbols {
 | |
| 					ee.EncodeSymbol(si.encName)
 | |
| 				} else {
 | |
| 					ee.EncodeString(c_UTF8, si.encName)
 | |
| 				}
 | |
| 				e.encodeValue(sfn.field(si), nil, true)
 | |
| 			}
 | |
| 		} else {
 | |
| 			for _, si := range tisfi {
 | |
| 				ee.WriteMapElemKey()
 | |
| 				if asSymbols {
 | |
| 					ee.EncodeSymbol(si.encName)
 | |
| 				} else {
 | |
| 					ee.EncodeString(c_UTF8, si.encName)
 | |
| 				}
 | |
| 				ee.WriteMapElemValue()
 | |
| 				e.encodeValue(sfn.field(si), nil, true)
 | |
| 			}
 | |
| 		}
 | |
| 		ee.WriteMapEnd()
 | |
| 	} else {
 | |
| 		ee.WriteArrayStart(len(tisfi))
 | |
| 		if !elemsep {
 | |
| 			for _, si := range tisfi {
 | |
| 				e.encodeValue(sfn.field(si), nil, true)
 | |
| 			}
 | |
| 		} else {
 | |
| 			for _, si := range tisfi {
 | |
| 				ee.WriteArrayElem()
 | |
| 				e.encodeValue(sfn.field(si), nil, true)
 | |
| 			}
 | |
| 		}
 | |
| 		ee.WriteArrayEnd()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
 | |
| 	fti := f.ti
 | |
| 	elemsep := e.hh.hasElemSeparators()
 | |
| 	tisfi := fti.sfip
 | |
| 	toMap := !(fti.toArray || e.h.StructToArray)
 | |
| 	// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
 | |
| 	if toMap {
 | |
| 		tisfi = fti.sfi
 | |
| 	}
 | |
| 	newlen := len(fti.sfi)
 | |
| 	ee := e.e
 | |
| 
 | |
| 	// Use sync.Pool to reduce allocating slices unnecessarily.
 | |
| 	// The cost of sync.Pool is less than the cost of new allocation.
 | |
| 	//
 | |
| 	// Each element of the array pools one of encStructPool(8|16|32|64).
 | |
| 	// It allows the re-use of slices up to 64 in length.
 | |
| 	// A performance cost of encoding structs was collecting
 | |
| 	// which values were empty and should be omitted.
 | |
| 	// We needed slices of reflect.Value and string to collect them.
 | |
| 	// This shared pool reduces the amount of unnecessary creation we do.
 | |
| 	// The cost is that of locking sometimes, but sync.Pool is efficient
 | |
| 	// enough to reduce thread contention.
 | |
| 
 | |
| 	var spool *sync.Pool
 | |
| 	var poolv interface{}
 | |
| 	var fkvs []stringRv
 | |
| 	if newlen <= 8 {
 | |
| 		spool, poolv = pool.stringRv8()
 | |
| 		fkvs = poolv.(*[8]stringRv)[:newlen]
 | |
| 	} else if newlen <= 16 {
 | |
| 		spool, poolv = pool.stringRv16()
 | |
| 		fkvs = poolv.(*[16]stringRv)[:newlen]
 | |
| 	} else if newlen <= 32 {
 | |
| 		spool, poolv = pool.stringRv32()
 | |
| 		fkvs = poolv.(*[32]stringRv)[:newlen]
 | |
| 	} else if newlen <= 64 {
 | |
| 		spool, poolv = pool.stringRv64()
 | |
| 		fkvs = poolv.(*[64]stringRv)[:newlen]
 | |
| 	} else if newlen <= 128 {
 | |
| 		spool, poolv = pool.stringRv128()
 | |
| 		fkvs = poolv.(*[128]stringRv)[:newlen]
 | |
| 	} else {
 | |
| 		fkvs = make([]stringRv, newlen)
 | |
| 	}
 | |
| 
 | |
| 	newlen = 0
 | |
| 	var kv stringRv
 | |
| 	recur := e.h.RecursiveEmptyCheck
 | |
| 	sfn := structFieldNode{v: rv, update: false}
 | |
| 	for _, si := range tisfi {
 | |
| 		// kv.r = si.field(rv, false)
 | |
| 		kv.r = sfn.field(si)
 | |
| 		if toMap {
 | |
| 			if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
 | |
| 				continue
 | |
| 			}
 | |
| 			kv.v = si.encName
 | |
| 		} else {
 | |
| 			// use the zero value.
 | |
| 			// if a reference or struct, set to nil (so you do not output too much)
 | |
| 			if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
 | |
| 				switch kv.r.Kind() {
 | |
| 				case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
 | |
| 					kv.r = reflect.Value{} //encode as nil
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		fkvs[newlen] = kv
 | |
| 		newlen++
 | |
| 	}
 | |
| 
 | |
| 	if toMap {
 | |
| 		ee.WriteMapStart(newlen)
 | |
| 		// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
 | |
| 		asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
 | |
| 		if !elemsep {
 | |
| 			for j := 0; j < newlen; j++ {
 | |
| 				kv = fkvs[j]
 | |
| 				if asSymbols {
 | |
| 					ee.EncodeSymbol(kv.v)
 | |
| 				} else {
 | |
| 					ee.EncodeString(c_UTF8, kv.v)
 | |
| 				}
 | |
| 				e.encodeValue(kv.r, nil, true)
 | |
| 			}
 | |
| 		} else {
 | |
| 			for j := 0; j < newlen; j++ {
 | |
| 				kv = fkvs[j]
 | |
| 				ee.WriteMapElemKey()
 | |
| 				if asSymbols {
 | |
| 					ee.EncodeSymbol(kv.v)
 | |
| 				} else {
 | |
| 					ee.EncodeString(c_UTF8, kv.v)
 | |
| 				}
 | |
| 				ee.WriteMapElemValue()
 | |
| 				e.encodeValue(kv.r, nil, true)
 | |
| 			}
 | |
| 		}
 | |
| 		ee.WriteMapEnd()
 | |
| 	} else {
 | |
| 		ee.WriteArrayStart(newlen)
 | |
| 		if !elemsep {
 | |
| 			for j := 0; j < newlen; j++ {
 | |
| 				e.encodeValue(fkvs[j].r, nil, true)
 | |
| 			}
 | |
| 		} else {
 | |
| 			for j := 0; j < newlen; j++ {
 | |
| 				ee.WriteArrayElem()
 | |
| 				e.encodeValue(fkvs[j].r, nil, true)
 | |
| 			}
 | |
| 		}
 | |
| 		ee.WriteArrayEnd()
 | |
| 	}
 | |
| 
 | |
| 	// do not use defer. Instead, use explicit pool return at end of function.
 | |
| 	// defer has a cost we are trying to avoid.
 | |
| 	// If there is a panic and these slices are not returned, it is ok.
 | |
| 	if spool != nil {
 | |
| 		spool.Put(poolv)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
 | |
| 	ee := e.e
 | |
| 	if rv.IsNil() {
 | |
| 		ee.EncodeNil()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	l := rv.Len()
 | |
| 	ee.WriteMapStart(l)
 | |
| 	elemsep := e.hh.hasElemSeparators()
 | |
| 	if l == 0 {
 | |
| 		ee.WriteMapEnd()
 | |
| 		return
 | |
| 	}
 | |
| 	var asSymbols bool
 | |
| 	// determine the underlying key and val encFn's for the map.
 | |
| 	// This eliminates some work which is done for each loop iteration i.e.
 | |
| 	// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
 | |
| 	//
 | |
| 	// However, if kind is reflect.Interface, do not pre-determine the
 | |
| 	// encoding type, because preEncodeValue may break it down to
 | |
| 	// a concrete type and kInterface will bomb.
 | |
| 	var keyFn, valFn *codecFn
 | |
| 	ti := f.ti
 | |
| 	rtkey0 := ti.rt.Key()
 | |
| 	rtkey := rtkey0
 | |
| 	rtval0 := ti.rt.Elem()
 | |
| 	rtval := rtval0
 | |
| 	rtkeyid := rt2id(rtkey0)
 | |
| 	rtvalid := rt2id(rtval0)
 | |
| 	for rtval.Kind() == reflect.Ptr {
 | |
| 		rtval = rtval.Elem()
 | |
| 	}
 | |
| 	if rtval.Kind() != reflect.Interface {
 | |
| 		valFn = e.cf.get(rtval, true, true)
 | |
| 	}
 | |
| 	mks := rv.MapKeys()
 | |
| 
 | |
| 	if e.h.Canonical {
 | |
| 		e.kMapCanonical(rtkey, rv, mks, valFn, asSymbols)
 | |
| 		ee.WriteMapEnd()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	var recognizedKtyp, recognizedVtyp bool
 | |
| 	var keyTypeIsString = rtkeyid == stringTypId
 | |
| 	if keyTypeIsString {
 | |
| 		asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
 | |
| 	} else {
 | |
| 		if useLookupRecognizedTypes {
 | |
| 			if recognizedKtyp = isRecognizedRtidOrPtr(rtkeyid); recognizedKtyp {
 | |
| 				goto LABEL1
 | |
| 			}
 | |
| 		}
 | |
| 		for rtkey.Kind() == reflect.Ptr {
 | |
| 			rtkey = rtkey.Elem()
 | |
| 		}
 | |
| 		if rtkey.Kind() != reflect.Interface {
 | |
| 			rtkeyid = rt2id(rtkey)
 | |
| 			keyFn = e.cf.get(rtkey, true, true)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// for j, lmks := 0, len(mks); j < lmks; j++ {
 | |
| LABEL1:
 | |
| 	recognizedVtyp = useLookupRecognizedTypes && isRecognizedRtidOrPtr(rtvalid)
 | |
| 	for j := range mks {
 | |
| 		if elemsep {
 | |
| 			ee.WriteMapElemKey()
 | |
| 		}
 | |
| 		if keyTypeIsString {
 | |
| 			if asSymbols {
 | |
| 				ee.EncodeSymbol(mks[j].String())
 | |
| 			} else {
 | |
| 				ee.EncodeString(c_UTF8, mks[j].String())
 | |
| 			}
 | |
| 		} else if useLookupRecognizedTypes && recognizedKtyp {
 | |
| 			e.encode(rv2i(mks[j]))
 | |
| 		} else {
 | |
| 			e.encodeValue(mks[j], keyFn, true)
 | |
| 		}
 | |
| 		if elemsep {
 | |
| 			ee.WriteMapElemValue()
 | |
| 		}
 | |
| 		if useLookupRecognizedTypes && recognizedVtyp {
 | |
| 			e.encode(rv2i(rv.MapIndex(mks[j])))
 | |
| 		} else {
 | |
| 			e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
 | |
| 		}
 | |
| 	}
 | |
| 	ee.WriteMapEnd()
 | |
| }
 | |
| 
 | |
| func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn, asSymbols bool) {
 | |
| 	ee := e.e
 | |
| 	elemsep := e.hh.hasElemSeparators()
 | |
| 	// we previously did out-of-band if an extension was registered.
 | |
| 	// This is not necessary, as the natural kind is sufficient for ordering.
 | |
| 
 | |
| 	// WHAT IS THIS? rtkeyid can never be a []uint8, per spec
 | |
| 	// if rtkeyid == uint8SliceTypId {
 | |
| 	// 	mksv := make([]bytesRv, len(mks))
 | |
| 	// 	for i, k := range mks {
 | |
| 	// 		v := &mksv[i]
 | |
| 	// 		v.r = k
 | |
| 	// 		v.v = k.Bytes()
 | |
| 	// 	}
 | |
| 	// 	sort.Sort(bytesRvSlice(mksv))
 | |
| 	// 	for i := range mksv {
 | |
| 	// 		if elemsep {
 | |
| 	// 			ee.WriteMapElemKey()
 | |
| 	// 		}
 | |
| 	// 		ee.EncodeStringBytes(c_RAW, mksv[i].v)
 | |
| 	// 		if elemsep {
 | |
| 	// 			ee.WriteMapElemValue()
 | |
| 	// 		}
 | |
| 	// 		e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 	// 	}
 | |
| 	// 	return
 | |
| 	// }
 | |
| 
 | |
| 	switch rtkey.Kind() {
 | |
| 	case reflect.Bool:
 | |
| 		mksv := make([]boolRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Bool()
 | |
| 		}
 | |
| 		sort.Sort(boolRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			ee.EncodeBool(mksv[i].v)
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	case reflect.String:
 | |
| 		mksv := make([]stringRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.String()
 | |
| 		}
 | |
| 		sort.Sort(stringRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			if asSymbols {
 | |
| 				ee.EncodeSymbol(mksv[i].v)
 | |
| 			} else {
 | |
| 				ee.EncodeString(c_UTF8, mksv[i].v)
 | |
| 			}
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
 | |
| 		mksv := make([]uintRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Uint()
 | |
| 		}
 | |
| 		sort.Sort(uintRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			ee.EncodeUint(mksv[i].v)
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
 | |
| 		mksv := make([]intRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Int()
 | |
| 		}
 | |
| 		sort.Sort(intRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			ee.EncodeInt(mksv[i].v)
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	case reflect.Float32:
 | |
| 		mksv := make([]floatRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Float()
 | |
| 		}
 | |
| 		sort.Sort(floatRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			ee.EncodeFloat32(float32(mksv[i].v))
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	case reflect.Float64:
 | |
| 		mksv := make([]floatRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Float()
 | |
| 		}
 | |
| 		sort.Sort(floatRvSlice(mksv))
 | |
| 		for i := range mksv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			ee.EncodeFloat64(mksv[i].v)
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
 | |
| 		}
 | |
| 	default:
 | |
| 		// out-of-band
 | |
| 		// first encode each key to a []byte first, then sort them, then record
 | |
| 		var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
 | |
| 		e2 := NewEncoderBytes(&mksv, e.hh)
 | |
| 		mksbv := make([]bytesRv, len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksbv[i]
 | |
| 			l := len(mksv)
 | |
| 			e2.MustEncode(k)
 | |
| 			v.r = k
 | |
| 			v.v = mksv[l:]
 | |
| 		}
 | |
| 		sort.Sort(bytesRvSlice(mksbv))
 | |
| 		for j := range mksbv {
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemKey()
 | |
| 			}
 | |
| 			e.asis(mksbv[j].v)
 | |
| 			if elemsep {
 | |
| 				ee.WriteMapElemValue()
 | |
| 			}
 | |
| 			e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // // --------------------------------------------------
 | |
| 
 | |
| // An Encoder writes an object to an output stream in the codec format.
 | |
| type Encoder struct {
 | |
| 	// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
 | |
| 	e encDriver
 | |
| 	// NOTE: Encoder shouldn't call it's write methods,
 | |
| 	// as the handler MAY need to do some coordination.
 | |
| 	w encWriter
 | |
| 
 | |
| 	hh Handle
 | |
| 	h  *BasicHandle
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 
 | |
| 	wi ioEncWriter
 | |
| 	wb bytesEncWriter
 | |
| 	bw bufio.Writer
 | |
| 
 | |
| 	// cr containerStateRecv
 | |
| 	as encDriverAsis
 | |
| 	// ---- cpu cache line boundary?
 | |
| 
 | |
| 	ci  set
 | |
| 	err error
 | |
| 
 | |
| 	b  [scratchByteArrayLen]byte
 | |
| 	cf codecFner
 | |
| }
 | |
| 
 | |
| // NewEncoder returns an Encoder for encoding into an io.Writer.
 | |
| //
 | |
| // For efficiency, Users are encouraged to pass in a memory buffered writer
 | |
| // (eg bufio.Writer, bytes.Buffer).
 | |
| func NewEncoder(w io.Writer, h Handle) *Encoder {
 | |
| 	e := newEncoder(h)
 | |
| 	e.Reset(w)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // NewEncoderBytes returns an encoder for encoding directly and efficiently
 | |
| // into a byte slice, using zero-copying to temporary slices.
 | |
| //
 | |
| // It will potentially replace the output byte slice pointed to.
 | |
| // After encoding, the out parameter contains the encoded contents.
 | |
| func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
 | |
| 	e := newEncoder(h)
 | |
| 	e.ResetBytes(out)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func newEncoder(h Handle) *Encoder {
 | |
| 	e := &Encoder{hh: h, h: h.getBasicHandle()}
 | |
| 	e.e = h.newEncDriver(e)
 | |
| 	e.as, _ = e.e.(encDriverAsis)
 | |
| 	// e.cr, _ = e.e.(containerStateRecv)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Reset the Encoder with a new output stream.
 | |
| //
 | |
| // This accommodates using the state of the Encoder,
 | |
| // where it has "cached" information about sub-engines.
 | |
| func (e *Encoder) Reset(w io.Writer) {
 | |
| 	var ok bool
 | |
| 	e.wi.w = w
 | |
| 	if e.h.WriterBufferSize > 0 {
 | |
| 		bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
 | |
| 		e.bw = *bw
 | |
| 		e.wi.bw = &e.bw
 | |
| 		e.wi.sw = &e.bw
 | |
| 		e.wi.fw = &e.bw
 | |
| 		e.wi.ww = &e.bw
 | |
| 	} else {
 | |
| 		if e.wi.bw, ok = w.(io.ByteWriter); !ok {
 | |
| 			e.wi.bw = &e.wi
 | |
| 		}
 | |
| 		if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
 | |
| 			e.wi.sw = &e.wi
 | |
| 		}
 | |
| 		e.wi.fw, _ = w.(ioEncFlusher)
 | |
| 		e.wi.ww = w
 | |
| 	}
 | |
| 	e.w = &e.wi
 | |
| 	e.e.reset()
 | |
| 	e.cf.reset(e.hh)
 | |
| 	e.err = nil
 | |
| }
 | |
| 
 | |
| func (e *Encoder) ResetBytes(out *[]byte) {
 | |
| 	in := *out
 | |
| 	if in == nil {
 | |
| 		in = make([]byte, defEncByteBufSize)
 | |
| 	}
 | |
| 	e.wb.b, e.wb.out, e.wb.c = in, out, 0
 | |
| 	e.w = &e.wb
 | |
| 	e.e.reset()
 | |
| 	e.cf.reset(e.hh)
 | |
| 	e.err = nil
 | |
| }
 | |
| 
 | |
| // Encode writes an object into a stream.
 | |
| //
 | |
| // Encoding can be configured via the struct tag for the fields.
 | |
| // The "codec" key in struct field's tag value is the key name,
 | |
| // followed by an optional comma and options.
 | |
| // Note that the "json" key is used in the absence of the "codec" key.
 | |
| //
 | |
| // To set an option on all fields (e.g. omitempty on all fields), you
 | |
| // can create a field called _struct, and set flags on it.
 | |
| //
 | |
| // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
 | |
| //    - the field's tag is "-", OR
 | |
| //    - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
 | |
| //
 | |
| // When encoding as a map, the first string in the tag (before the comma)
 | |
| // is the map key string to use when encoding.
 | |
| //
 | |
| // However, struct values may encode as arrays. This happens when:
 | |
| //    - StructToArray Encode option is set, OR
 | |
| //    - the tag on the _struct field sets the "toarray" option
 | |
| // Note that omitempty is ignored when encoding struct values as arrays,
 | |
| // as an entry must be encoded for each field, to maintain its position.
 | |
| //
 | |
| // Values with types that implement MapBySlice are encoded as stream maps.
 | |
| //
 | |
| // The empty values (for omitempty option) are false, 0, any nil pointer
 | |
| // or interface value, and any array, slice, map, or string of length zero.
 | |
| //
 | |
| // Anonymous fields are encoded inline except:
 | |
| //    - the struct tag specifies a replacement name (first value)
 | |
| //    - the field is of an interface type
 | |
| //
 | |
| // Examples:
 | |
| //
 | |
| //      // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
 | |
| //      type MyStruct struct {
 | |
| //          _struct bool    `codec:",omitempty"`   //set omitempty for every field
 | |
| //          Field1 string   `codec:"-"`            //skip this field
 | |
| //          Field2 int      `codec:"myName"`       //Use key "myName" in encode stream
 | |
| //          Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if empty.
 | |
| //          Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if empty.
 | |
| //          io.Reader                              //use key "Reader".
 | |
| //          MyStruct        `codec:"my1"           //use key "my1".
 | |
| //          MyStruct                               //inline it
 | |
| //          ...
 | |
| //      }
 | |
| //
 | |
| //      type MyStruct struct {
 | |
| //          _struct bool    `codec:",toarray"`   //encode struct as an array
 | |
| //      }
 | |
| //
 | |
| // The mode of encoding is based on the type of the value. When a value is seen:
 | |
| //   - If a Selfer, call its CodecEncodeSelf method
 | |
| //   - If an extension is registered for it, call that extension function
 | |
| //   - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
 | |
| //   - Else encode it based on its reflect.Kind
 | |
| //
 | |
| // Note that struct field names and keys in map[string]XXX will be treated as symbols.
 | |
| // Some formats support symbols (e.g. binc) and will properly encode the string
 | |
| // only once in the stream, and use a tag to refer to it thereafter.
 | |
| func (e *Encoder) Encode(v interface{}) (err error) {
 | |
| 	defer panicToErrs2(&e.err, &err)
 | |
| 	e.MustEncode(v)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // MustEncode is like Encode, but panics if unable to Encode.
 | |
| // This provides insight to the code location that triggered the error.
 | |
| func (e *Encoder) MustEncode(v interface{}) {
 | |
| 	if e.err != nil {
 | |
| 		panic(e.err)
 | |
| 	}
 | |
| 	e.encode(v)
 | |
| 	e.e.atEndOfEncode()
 | |
| 	e.w.atEndOfEncode()
 | |
| }
 | |
| 
 | |
| func (e *Encoder) encode(iv interface{}) {
 | |
| 	if iv == nil || definitelyNil(iv) {
 | |
| 		e.e.EncodeNil()
 | |
| 		return
 | |
| 	}
 | |
| 	if v, ok := iv.(Selfer); ok {
 | |
| 		v.CodecEncodeSelf(e)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	switch v := iv.(type) {
 | |
| 	// case nil:
 | |
| 	// 	e.e.EncodeNil()
 | |
| 	// case Selfer:
 | |
| 	// 	v.CodecEncodeSelf(e)
 | |
| 	case Raw:
 | |
| 		e.rawBytes(v)
 | |
| 	case reflect.Value:
 | |
| 		e.encodeValue(v, nil, true)
 | |
| 
 | |
| 	case string:
 | |
| 		e.e.EncodeString(c_UTF8, v)
 | |
| 	case bool:
 | |
| 		e.e.EncodeBool(v)
 | |
| 	case int:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int8:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int16:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int32:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int64:
 | |
| 		e.e.EncodeInt(v)
 | |
| 	case uint:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint8:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint16:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint32:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint64:
 | |
| 		e.e.EncodeUint(v)
 | |
| 	case uintptr:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case float32:
 | |
| 		e.e.EncodeFloat32(v)
 | |
| 	case float64:
 | |
| 		e.e.EncodeFloat64(v)
 | |
| 
 | |
| 	case []uint8:
 | |
| 		e.e.EncodeStringBytes(c_RAW, v)
 | |
| 
 | |
| 	case *string:
 | |
| 		e.e.EncodeString(c_UTF8, *v)
 | |
| 	case *bool:
 | |
| 		e.e.EncodeBool(*v)
 | |
| 	case *int:
 | |
| 		e.e.EncodeInt(int64(*v))
 | |
| 	case *int8:
 | |
| 		e.e.EncodeInt(int64(*v))
 | |
| 	case *int16:
 | |
| 		e.e.EncodeInt(int64(*v))
 | |
| 	case *int32:
 | |
| 		e.e.EncodeInt(int64(*v))
 | |
| 	case *int64:
 | |
| 		e.e.EncodeInt(*v)
 | |
| 	case *uint:
 | |
| 		e.e.EncodeUint(uint64(*v))
 | |
| 	case *uint8:
 | |
| 		e.e.EncodeUint(uint64(*v))
 | |
| 	case *uint16:
 | |
| 		e.e.EncodeUint(uint64(*v))
 | |
| 	case *uint32:
 | |
| 		e.e.EncodeUint(uint64(*v))
 | |
| 	case *uint64:
 | |
| 		e.e.EncodeUint(*v)
 | |
| 	case *uintptr:
 | |
| 		e.e.EncodeUint(uint64(*v))
 | |
| 	case *float32:
 | |
| 		e.e.EncodeFloat32(*v)
 | |
| 	case *float64:
 | |
| 		e.e.EncodeFloat64(*v)
 | |
| 
 | |
| 	case *[]uint8:
 | |
| 		e.e.EncodeStringBytes(c_RAW, *v)
 | |
| 
 | |
| 	default:
 | |
| 		if !fastpathEncodeTypeSwitch(iv, e) {
 | |
| 			e.encodeValue(reflect.ValueOf(iv), nil, false)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
 | |
| 	// if a valid fn is passed, it MUST BE for the dereferenced type of rv
 | |
| 	var sptr uintptr
 | |
| TOP:
 | |
| 	switch rv.Kind() {
 | |
| 	case reflect.Ptr:
 | |
| 		if rv.IsNil() {
 | |
| 			e.e.EncodeNil()
 | |
| 			return
 | |
| 		}
 | |
| 		rv = rv.Elem()
 | |
| 		if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
 | |
| 			// TODO: Movable pointers will be an issue here. Future problem.
 | |
| 			sptr = rv.UnsafeAddr()
 | |
| 			break TOP
 | |
| 		}
 | |
| 		goto TOP
 | |
| 	case reflect.Interface:
 | |
| 		if rv.IsNil() {
 | |
| 			e.e.EncodeNil()
 | |
| 			return
 | |
| 		}
 | |
| 		rv = rv.Elem()
 | |
| 		goto TOP
 | |
| 	case reflect.Slice, reflect.Map:
 | |
| 		if rv.IsNil() {
 | |
| 			e.e.EncodeNil()
 | |
| 			return
 | |
| 		}
 | |
| 	case reflect.Invalid, reflect.Func:
 | |
| 		e.e.EncodeNil()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if sptr != 0 && (&e.ci).add(sptr) {
 | |
| 		e.errorf("circular reference found: # %d", sptr)
 | |
| 	}
 | |
| 
 | |
| 	if fn == nil {
 | |
| 		rt := rv.Type()
 | |
| 		// TODO: calling isRecognizedRtid here is a major slowdown
 | |
| 		if false && useLookupRecognizedTypes && isRecognizedRtidOrPtr(rt2id(rt)) {
 | |
| 			e.encode(rv2i(rv))
 | |
| 			return
 | |
| 		}
 | |
| 		// always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
 | |
| 		fn = e.cf.get(rt, checkFastpath, true)
 | |
| 	}
 | |
| 	fn.fe(e, &fn.i, rv)
 | |
| 	if sptr != 0 {
 | |
| 		(&e.ci).remove(sptr)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
 | |
| 	if fnerr != nil {
 | |
| 		panic(fnerr)
 | |
| 	}
 | |
| 	if bs == nil {
 | |
| 		e.e.EncodeNil()
 | |
| 	} else if asis {
 | |
| 		e.asis(bs)
 | |
| 	} else {
 | |
| 		e.e.EncodeStringBytes(c, bs)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) asis(v []byte) {
 | |
| 	if e.as == nil {
 | |
| 		e.w.writeb(v)
 | |
| 	} else {
 | |
| 		e.as.EncodeAsis(v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) rawBytes(vv Raw) {
 | |
| 	v := []byte(vv)
 | |
| 	if !e.h.Raw {
 | |
| 		e.errorf("Raw values cannot be encoded: %v", v)
 | |
| 	}
 | |
| 	if e.as == nil {
 | |
| 		e.w.writeb(v)
 | |
| 	} else {
 | |
| 		e.as.EncodeAsis(v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *Encoder) errorf(format string, params ...interface{}) {
 | |
| 	err := fmt.Errorf(format, params...)
 | |
| 	panic(err)
 | |
| }
 |