mirror of
				https://github.com/k3s-io/kubernetes.git
				synced 2025-10-30 21:30:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			328 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| /*
 | |
| Copyright 2014 The Kubernetes Authors.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License.
 | |
| */
 | |
| 
 | |
| package resource
 | |
| 
 | |
| import (
 | |
| 	"math/big"
 | |
| 
 | |
| 	inf "gopkg.in/inf.v0"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
 | |
| 	// It is also the maximum decimal digits that can be represented with an int64.
 | |
| 	maxInt64Factors = 18
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	// Commonly needed big.Int values-- treat as read only!
 | |
| 	bigTen      = big.NewInt(10)
 | |
| 	bigZero     = big.NewInt(0)
 | |
| 	bigOne      = big.NewInt(1)
 | |
| 	bigThousand = big.NewInt(1000)
 | |
| 	big1024     = big.NewInt(1024)
 | |
| 
 | |
| 	// Commonly needed inf.Dec values-- treat as read only!
 | |
| 	decZero      = inf.NewDec(0, 0)
 | |
| 	decOne       = inf.NewDec(1, 0)
 | |
| 	decMinusOne  = inf.NewDec(-1, 0)
 | |
| 	decThousand  = inf.NewDec(1000, 0)
 | |
| 	dec1024      = inf.NewDec(1024, 0)
 | |
| 	decMinus1024 = inf.NewDec(-1024, 0)
 | |
| 
 | |
| 	// Largest (in magnitude) number allowed.
 | |
| 	maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
 | |
| 
 | |
| 	// The maximum value we can represent milli-units for.
 | |
| 	// Compare with the return value of Quantity.Value() to
 | |
| 	// see if it's safe to use Quantity.MilliValue().
 | |
| 	MaxMilliValue = int64(((1 << 63) - 1) / 1000)
 | |
| )
 | |
| 
 | |
| const mostNegative = -(mostPositive + 1)
 | |
| const mostPositive = 1<<63 - 1
 | |
| 
 | |
| // int64Add returns a+b, or false if that would overflow int64.
 | |
| func int64Add(a, b int64) (int64, bool) {
 | |
| 	c := a + b
 | |
| 	switch {
 | |
| 	case a > 0 && b > 0:
 | |
| 		if c < 0 {
 | |
| 			return 0, false
 | |
| 		}
 | |
| 	case a < 0 && b < 0:
 | |
| 		if c > 0 {
 | |
| 			return 0, false
 | |
| 		}
 | |
| 		if a == mostNegative && b == mostNegative {
 | |
| 			return 0, false
 | |
| 		}
 | |
| 	}
 | |
| 	return c, true
 | |
| }
 | |
| 
 | |
| // int64Multiply returns a*b, or false if that would overflow or underflow int64.
 | |
| func int64Multiply(a, b int64) (int64, bool) {
 | |
| 	if a == 0 || b == 0 || a == 1 || b == 1 {
 | |
| 		return a * b, true
 | |
| 	}
 | |
| 	if a == mostNegative || b == mostNegative {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	c := a * b
 | |
| 	return c, c/b == a
 | |
| }
 | |
| 
 | |
| // int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
 | |
| // Use when b is known to be greater than one.
 | |
| func int64MultiplyScale(a int64, b int64) (int64, bool) {
 | |
| 	if a == 0 || a == 1 {
 | |
| 		return a * b, true
 | |
| 	}
 | |
| 	if a == mostNegative && b != 1 {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	c := a * b
 | |
| 	return c, c/b == a
 | |
| }
 | |
| 
 | |
| // int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
 | |
| // int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
 | |
| func int64MultiplyScale10(a int64) (int64, bool) {
 | |
| 	if a == 0 || a == 1 {
 | |
| 		return a * 10, true
 | |
| 	}
 | |
| 	if a == mostNegative {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	c := a * 10
 | |
| 	return c, c/10 == a
 | |
| }
 | |
| 
 | |
| // int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
 | |
| // int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
 | |
| func int64MultiplyScale100(a int64) (int64, bool) {
 | |
| 	if a == 0 || a == 1 {
 | |
| 		return a * 100, true
 | |
| 	}
 | |
| 	if a == mostNegative {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	c := a * 100
 | |
| 	return c, c/100 == a
 | |
| }
 | |
| 
 | |
| // int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
 | |
| // int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
 | |
| func int64MultiplyScale1000(a int64) (int64, bool) {
 | |
| 	if a == 0 || a == 1 {
 | |
| 		return a * 1000, true
 | |
| 	}
 | |
| 	if a == mostNegative {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	c := a * 1000
 | |
| 	return c, c/1000 == a
 | |
| }
 | |
| 
 | |
| // positiveScaleInt64 multiplies base by 10^scale, returning false if the
 | |
| // value overflows. Passing a negative scale is undefined.
 | |
| func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
 | |
| 	switch scale {
 | |
| 	case 0:
 | |
| 		return base, true
 | |
| 	case 1:
 | |
| 		return int64MultiplyScale10(base)
 | |
| 	case 2:
 | |
| 		return int64MultiplyScale100(base)
 | |
| 	case 3:
 | |
| 		return int64MultiplyScale1000(base)
 | |
| 	case 6:
 | |
| 		return int64MultiplyScale(base, 1000000)
 | |
| 	case 9:
 | |
| 		return int64MultiplyScale(base, 1000000000)
 | |
| 	default:
 | |
| 		value := base
 | |
| 		var ok bool
 | |
| 		for i := Scale(0); i < scale; i++ {
 | |
| 			if value, ok = int64MultiplyScale(value, 10); !ok {
 | |
| 				return 0, false
 | |
| 			}
 | |
| 		}
 | |
| 		return value, true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // negativeScaleInt64 reduces base by the provided scale, rounding up, until the
 | |
| // value is zero or the scale is reached. Passing a negative scale is undefined.
 | |
| // The value returned, if not exact, is rounded away from zero.
 | |
| func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
 | |
| 	if scale == 0 {
 | |
| 		return base, true
 | |
| 	}
 | |
| 
 | |
| 	value := base
 | |
| 	var fraction bool
 | |
| 	for i := Scale(0); i < scale; i++ {
 | |
| 		if !fraction && value%10 != 0 {
 | |
| 			fraction = true
 | |
| 		}
 | |
| 		value = value / 10
 | |
| 		if value == 0 {
 | |
| 			if fraction {
 | |
| 				if base > 0 {
 | |
| 					return 1, false
 | |
| 				}
 | |
| 				return -1, false
 | |
| 			}
 | |
| 			return 0, true
 | |
| 		}
 | |
| 	}
 | |
| 	if fraction {
 | |
| 		if base > 0 {
 | |
| 			value += 1
 | |
| 		} else {
 | |
| 			value += -1
 | |
| 		}
 | |
| 	}
 | |
| 	return value, !fraction
 | |
| }
 | |
| 
 | |
| func pow10Int64(b int64) int64 {
 | |
| 	switch b {
 | |
| 	case 0:
 | |
| 		return 1
 | |
| 	case 1:
 | |
| 		return 10
 | |
| 	case 2:
 | |
| 		return 100
 | |
| 	case 3:
 | |
| 		return 1000
 | |
| 	case 4:
 | |
| 		return 10000
 | |
| 	case 5:
 | |
| 		return 100000
 | |
| 	case 6:
 | |
| 		return 1000000
 | |
| 	case 7:
 | |
| 		return 10000000
 | |
| 	case 8:
 | |
| 		return 100000000
 | |
| 	case 9:
 | |
| 		return 1000000000
 | |
| 	case 10:
 | |
| 		return 10000000000
 | |
| 	case 11:
 | |
| 		return 100000000000
 | |
| 	case 12:
 | |
| 		return 1000000000000
 | |
| 	case 13:
 | |
| 		return 10000000000000
 | |
| 	case 14:
 | |
| 		return 100000000000000
 | |
| 	case 15:
 | |
| 		return 1000000000000000
 | |
| 	case 16:
 | |
| 		return 10000000000000000
 | |
| 	case 17:
 | |
| 		return 100000000000000000
 | |
| 	case 18:
 | |
| 		return 1000000000000000000
 | |
| 	default:
 | |
| 		return 0
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // powInt64 raises a to the bth power. Is not overflow aware.
 | |
| func powInt64(a, b int64) int64 {
 | |
| 	p := int64(1)
 | |
| 	for b > 0 {
 | |
| 		if b&1 != 0 {
 | |
| 			p *= a
 | |
| 		}
 | |
| 		b >>= 1
 | |
| 		a *= a
 | |
| 	}
 | |
| 	return p
 | |
| }
 | |
| 
 | |
| // negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
 | |
| // false if no such division is possible. Dividing by negative scales is undefined.
 | |
| func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
 | |
| 	if scale == 0 {
 | |
| 		return base, 0, true
 | |
| 	}
 | |
| 	// the max scale representable in base 10 in an int64 is 18 decimal places
 | |
| 	if scale >= 18 {
 | |
| 		return 0, base, false
 | |
| 	}
 | |
| 	divisor := pow10Int64(int64(scale))
 | |
| 	return base / divisor, base % divisor, true
 | |
| }
 | |
| 
 | |
| // removeInt64Factors divides in a loop; the return values have the property that
 | |
| // value == result * base ^ scale
 | |
| func removeInt64Factors(value int64, base int64) (result int64, times int32) {
 | |
| 	times = 0
 | |
| 	result = value
 | |
| 	negative := result < 0
 | |
| 	if negative {
 | |
| 		result = -result
 | |
| 	}
 | |
| 	switch base {
 | |
| 	// allow the compiler to optimize the common cases
 | |
| 	case 10:
 | |
| 		for result >= 10 && result%10 == 0 {
 | |
| 			times++
 | |
| 			result = result / 10
 | |
| 		}
 | |
| 	// allow the compiler to optimize the common cases
 | |
| 	case 1024:
 | |
| 		for result >= 1024 && result%1024 == 0 {
 | |
| 			times++
 | |
| 			result = result / 1024
 | |
| 		}
 | |
| 	default:
 | |
| 		for result >= base && result%base == 0 {
 | |
| 			times++
 | |
| 			result = result / base
 | |
| 		}
 | |
| 	}
 | |
| 	if negative {
 | |
| 		result = -result
 | |
| 	}
 | |
| 	return result, times
 | |
| }
 | |
| 
 | |
| // removeBigIntFactors divides in a loop; the return values have the property that
 | |
| // d == result * factor ^ times
 | |
| // d may be modified in place.
 | |
| // If d == 0, then the return values will be (0, 0)
 | |
| func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
 | |
| 	q := big.NewInt(0)
 | |
| 	m := big.NewInt(0)
 | |
| 	for d.Cmp(bigZero) != 0 {
 | |
| 		q.DivMod(d, factor, m)
 | |
| 		if m.Cmp(bigZero) != 0 {
 | |
| 			break
 | |
| 		}
 | |
| 		times++
 | |
| 		d, q = q, d
 | |
| 	}
 | |
| 	return d, times
 | |
| }
 |