mirror of
				https://github.com/k3s-io/kubernetes.git
				synced 2025-10-30 21:30:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			171 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package pkcs12
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto/sha1"
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	one = big.NewInt(1)
 | |
| )
 | |
| 
 | |
| // sha1Sum returns the SHA-1 hash of in.
 | |
| func sha1Sum(in []byte) []byte {
 | |
| 	sum := sha1.Sum(in)
 | |
| 	return sum[:]
 | |
| }
 | |
| 
 | |
| // fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of
 | |
| // repeats of pattern.
 | |
| func fillWithRepeats(pattern []byte, v int) []byte {
 | |
| 	if len(pattern) == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	outputLen := v * ((len(pattern) + v - 1) / v)
 | |
| 	return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen]
 | |
| }
 | |
| 
 | |
| func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) {
 | |
| 	// implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments
 | |
| 
 | |
| 	//    Let H be a hash function built around a compression function f:
 | |
| 
 | |
| 	//       Z_2^u x Z_2^v -> Z_2^u
 | |
| 
 | |
| 	//    (that is, H has a chaining variable and output of length u bits, and
 | |
| 	//    the message input to the compression function of H is v bits).  The
 | |
| 	//    values for u and v are as follows:
 | |
| 
 | |
| 	//            HASH FUNCTION     VALUE u        VALUE v
 | |
| 	//              MD2, MD5          128            512
 | |
| 	//                SHA-1           160            512
 | |
| 	//               SHA-224          224            512
 | |
| 	//               SHA-256          256            512
 | |
| 	//               SHA-384          384            1024
 | |
| 	//               SHA-512          512            1024
 | |
| 	//             SHA-512/224        224            1024
 | |
| 	//             SHA-512/256        256            1024
 | |
| 
 | |
| 	//    Furthermore, let r be the iteration count.
 | |
| 
 | |
| 	//    We assume here that u and v are both multiples of 8, as are the
 | |
| 	//    lengths of the password and salt strings (which we denote by p and s,
 | |
| 	//    respectively) and the number n of pseudorandom bits required.  In
 | |
| 	//    addition, u and v are of course non-zero.
 | |
| 
 | |
| 	//    For information on security considerations for MD5 [19], see [25] and
 | |
| 	//    [1], and on those for MD2, see [18].
 | |
| 
 | |
| 	//    The following procedure can be used to produce pseudorandom bits for
 | |
| 	//    a particular "purpose" that is identified by a byte called "ID".
 | |
| 	//    This standard specifies 3 different values for the ID byte:
 | |
| 
 | |
| 	//    1.  If ID=1, then the pseudorandom bits being produced are to be used
 | |
| 	//        as key material for performing encryption or decryption.
 | |
| 
 | |
| 	//    2.  If ID=2, then the pseudorandom bits being produced are to be used
 | |
| 	//        as an IV (Initial Value) for encryption or decryption.
 | |
| 
 | |
| 	//    3.  If ID=3, then the pseudorandom bits being produced are to be used
 | |
| 	//        as an integrity key for MACing.
 | |
| 
 | |
| 	//    1.  Construct a string, D (the "diversifier"), by concatenating v/8
 | |
| 	//        copies of ID.
 | |
| 	var D []byte
 | |
| 	for i := 0; i < v; i++ {
 | |
| 		D = append(D, ID)
 | |
| 	}
 | |
| 
 | |
| 	//    2.  Concatenate copies of the salt together to create a string S of
 | |
| 	//        length v(ceiling(s/v)) bits (the final copy of the salt may be
 | |
| 	//        truncated to create S).  Note that if the salt is the empty
 | |
| 	//        string, then so is S.
 | |
| 
 | |
| 	S := fillWithRepeats(salt, v)
 | |
| 
 | |
| 	//    3.  Concatenate copies of the password together to create a string P
 | |
| 	//        of length v(ceiling(p/v)) bits (the final copy of the password
 | |
| 	//        may be truncated to create P).  Note that if the password is the
 | |
| 	//        empty string, then so is P.
 | |
| 
 | |
| 	P := fillWithRepeats(password, v)
 | |
| 
 | |
| 	//    4.  Set I=S||P to be the concatenation of S and P.
 | |
| 	I := append(S, P...)
 | |
| 
 | |
| 	//    5.  Set c=ceiling(n/u).
 | |
| 	c := (size + u - 1) / u
 | |
| 
 | |
| 	//    6.  For i=1, 2, ..., c, do the following:
 | |
| 	A := make([]byte, c*20)
 | |
| 	var IjBuf []byte
 | |
| 	for i := 0; i < c; i++ {
 | |
| 		//        A.  Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
 | |
| 		//            H(H(H(... H(D||I))))
 | |
| 		Ai := hash(append(D, I...))
 | |
| 		for j := 1; j < r; j++ {
 | |
| 			Ai = hash(Ai)
 | |
| 		}
 | |
| 		copy(A[i*20:], Ai[:])
 | |
| 
 | |
| 		if i < c-1 { // skip on last iteration
 | |
| 			// B.  Concatenate copies of Ai to create a string B of length v
 | |
| 			//     bits (the final copy of Ai may be truncated to create B).
 | |
| 			var B []byte
 | |
| 			for len(B) < v {
 | |
| 				B = append(B, Ai[:]...)
 | |
| 			}
 | |
| 			B = B[:v]
 | |
| 
 | |
| 			// C.  Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
 | |
| 			//     blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
 | |
| 			//     setting I_j=(I_j+B+1) mod 2^v for each j.
 | |
| 			{
 | |
| 				Bbi := new(big.Int).SetBytes(B)
 | |
| 				Ij := new(big.Int)
 | |
| 
 | |
| 				for j := 0; j < len(I)/v; j++ {
 | |
| 					Ij.SetBytes(I[j*v : (j+1)*v])
 | |
| 					Ij.Add(Ij, Bbi)
 | |
| 					Ij.Add(Ij, one)
 | |
| 					Ijb := Ij.Bytes()
 | |
| 					// We expect Ijb to be exactly v bytes,
 | |
| 					// if it is longer or shorter we must
 | |
| 					// adjust it accordingly.
 | |
| 					if len(Ijb) > v {
 | |
| 						Ijb = Ijb[len(Ijb)-v:]
 | |
| 					}
 | |
| 					if len(Ijb) < v {
 | |
| 						if IjBuf == nil {
 | |
| 							IjBuf = make([]byte, v)
 | |
| 						}
 | |
| 						bytesShort := v - len(Ijb)
 | |
| 						for i := 0; i < bytesShort; i++ {
 | |
| 							IjBuf[i] = 0
 | |
| 						}
 | |
| 						copy(IjBuf[bytesShort:], Ijb)
 | |
| 						Ijb = IjBuf
 | |
| 					}
 | |
| 					copy(I[j*v:(j+1)*v], Ijb)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	//    7.  Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
 | |
| 	//        bit string, A.
 | |
| 
 | |
| 	//    8.  Use the first n bits of A as the output of this entire process.
 | |
| 	return A[:size]
 | |
| 
 | |
| 	//    If the above process is being used to generate a DES key, the process
 | |
| 	//    should be used to create 64 random bits, and the key's parity bits
 | |
| 	//    should be set after the 64 bits have been produced.  Similar concerns
 | |
| 	//    hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
 | |
| 	//    similar keys with parity bits "built into them".
 | |
| }
 |