mirror of
				https://github.com/k3s-io/kubernetes.git
				synced 2025-10-31 05:40:42 +00:00 
			
		
		
		
	runc rc95 contains a fix for CVE-2021-30465. runc rc94 provides fixes and improvements. One notable change is cgroup manager's Set now accept Resources rather than Cgroup (see https://github.com/opencontainers/runc/pull/2906). Modify the code accordingly. Also update runc dependencies (as hinted by hack/lint-depdendencies.sh): github.com/cilium/ebpf v0.5.0 github.com/containerd/console v1.0.2 github.com/coreos/go-systemd/v22 v22.3.1 github.com/godbus/dbus/v5 v5.0.4 github.com/moby/sys/mountinfo v0.4.1 golang.org/x/sys v0.0.0-20210426230700-d19ff857e887 github.com/google/go-cmp v0.5.4 github.com/kr/pretty v0.2.1 github.com/opencontainers/runtime-spec v1.0.3-0.20210326190908-1c3f411f0417 Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
		
			
				
	
	
		
			379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2017, The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package cmp
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"reflect"
 | |
| 	"strings"
 | |
| 	"unicode"
 | |
| 	"unicode/utf8"
 | |
| 
 | |
| 	"github.com/google/go-cmp/cmp/internal/value"
 | |
| )
 | |
| 
 | |
| // Path is a list of PathSteps describing the sequence of operations to get
 | |
| // from some root type to the current position in the value tree.
 | |
| // The first Path element is always an operation-less PathStep that exists
 | |
| // simply to identify the initial type.
 | |
| //
 | |
| // When traversing structs with embedded structs, the embedded struct will
 | |
| // always be accessed as a field before traversing the fields of the
 | |
| // embedded struct themselves. That is, an exported field from the
 | |
| // embedded struct will never be accessed directly from the parent struct.
 | |
| type Path []PathStep
 | |
| 
 | |
| // PathStep is a union-type for specific operations to traverse
 | |
| // a value's tree structure. Users of this package never need to implement
 | |
| // these types as values of this type will be returned by this package.
 | |
| //
 | |
| // Implementations of this interface are
 | |
| // StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
 | |
| type PathStep interface {
 | |
| 	String() string
 | |
| 
 | |
| 	// Type is the resulting type after performing the path step.
 | |
| 	Type() reflect.Type
 | |
| 
 | |
| 	// Values is the resulting values after performing the path step.
 | |
| 	// The type of each valid value is guaranteed to be identical to Type.
 | |
| 	//
 | |
| 	// In some cases, one or both may be invalid or have restrictions:
 | |
| 	//	• For StructField, both are not interface-able if the current field
 | |
| 	//	is unexported and the struct type is not explicitly permitted by
 | |
| 	//	an Exporter to traverse unexported fields.
 | |
| 	//	• For SliceIndex, one may be invalid if an element is missing from
 | |
| 	//	either the x or y slice.
 | |
| 	//	• For MapIndex, one may be invalid if an entry is missing from
 | |
| 	//	either the x or y map.
 | |
| 	//
 | |
| 	// The provided values must not be mutated.
 | |
| 	Values() (vx, vy reflect.Value)
 | |
| }
 | |
| 
 | |
| var (
 | |
| 	_ PathStep = StructField{}
 | |
| 	_ PathStep = SliceIndex{}
 | |
| 	_ PathStep = MapIndex{}
 | |
| 	_ PathStep = Indirect{}
 | |
| 	_ PathStep = TypeAssertion{}
 | |
| 	_ PathStep = Transform{}
 | |
| )
 | |
| 
 | |
| func (pa *Path) push(s PathStep) {
 | |
| 	*pa = append(*pa, s)
 | |
| }
 | |
| 
 | |
| func (pa *Path) pop() {
 | |
| 	*pa = (*pa)[:len(*pa)-1]
 | |
| }
 | |
| 
 | |
| // Last returns the last PathStep in the Path.
 | |
| // If the path is empty, this returns a non-nil PathStep that reports a nil Type.
 | |
| func (pa Path) Last() PathStep {
 | |
| 	return pa.Index(-1)
 | |
| }
 | |
| 
 | |
| // Index returns the ith step in the Path and supports negative indexing.
 | |
| // A negative index starts counting from the tail of the Path such that -1
 | |
| // refers to the last step, -2 refers to the second-to-last step, and so on.
 | |
| // If index is invalid, this returns a non-nil PathStep that reports a nil Type.
 | |
| func (pa Path) Index(i int) PathStep {
 | |
| 	if i < 0 {
 | |
| 		i = len(pa) + i
 | |
| 	}
 | |
| 	if i < 0 || i >= len(pa) {
 | |
| 		return pathStep{}
 | |
| 	}
 | |
| 	return pa[i]
 | |
| }
 | |
| 
 | |
| // String returns the simplified path to a node.
 | |
| // The simplified path only contains struct field accesses.
 | |
| //
 | |
| // For example:
 | |
| //	MyMap.MySlices.MyField
 | |
| func (pa Path) String() string {
 | |
| 	var ss []string
 | |
| 	for _, s := range pa {
 | |
| 		if _, ok := s.(StructField); ok {
 | |
| 			ss = append(ss, s.String())
 | |
| 		}
 | |
| 	}
 | |
| 	return strings.TrimPrefix(strings.Join(ss, ""), ".")
 | |
| }
 | |
| 
 | |
| // GoString returns the path to a specific node using Go syntax.
 | |
| //
 | |
| // For example:
 | |
| //	(*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
 | |
| func (pa Path) GoString() string {
 | |
| 	var ssPre, ssPost []string
 | |
| 	var numIndirect int
 | |
| 	for i, s := range pa {
 | |
| 		var nextStep PathStep
 | |
| 		if i+1 < len(pa) {
 | |
| 			nextStep = pa[i+1]
 | |
| 		}
 | |
| 		switch s := s.(type) {
 | |
| 		case Indirect:
 | |
| 			numIndirect++
 | |
| 			pPre, pPost := "(", ")"
 | |
| 			switch nextStep.(type) {
 | |
| 			case Indirect:
 | |
| 				continue // Next step is indirection, so let them batch up
 | |
| 			case StructField:
 | |
| 				numIndirect-- // Automatic indirection on struct fields
 | |
| 			case nil:
 | |
| 				pPre, pPost = "", "" // Last step; no need for parenthesis
 | |
| 			}
 | |
| 			if numIndirect > 0 {
 | |
| 				ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
 | |
| 				ssPost = append(ssPost, pPost)
 | |
| 			}
 | |
| 			numIndirect = 0
 | |
| 			continue
 | |
| 		case Transform:
 | |
| 			ssPre = append(ssPre, s.trans.name+"(")
 | |
| 			ssPost = append(ssPost, ")")
 | |
| 			continue
 | |
| 		}
 | |
| 		ssPost = append(ssPost, s.String())
 | |
| 	}
 | |
| 	for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
 | |
| 		ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
 | |
| 	}
 | |
| 	return strings.Join(ssPre, "") + strings.Join(ssPost, "")
 | |
| }
 | |
| 
 | |
| type pathStep struct {
 | |
| 	typ    reflect.Type
 | |
| 	vx, vy reflect.Value
 | |
| }
 | |
| 
 | |
| func (ps pathStep) Type() reflect.Type             { return ps.typ }
 | |
| func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
 | |
| func (ps pathStep) String() string {
 | |
| 	if ps.typ == nil {
 | |
| 		return "<nil>"
 | |
| 	}
 | |
| 	s := ps.typ.String()
 | |
| 	if s == "" || strings.ContainsAny(s, "{}\n") {
 | |
| 		return "root" // Type too simple or complex to print
 | |
| 	}
 | |
| 	return fmt.Sprintf("{%s}", s)
 | |
| }
 | |
| 
 | |
| // StructField represents a struct field access on a field called Name.
 | |
| type StructField struct{ *structField }
 | |
| type structField struct {
 | |
| 	pathStep
 | |
| 	name string
 | |
| 	idx  int
 | |
| 
 | |
| 	// These fields are used for forcibly accessing an unexported field.
 | |
| 	// pvx, pvy, and field are only valid if unexported is true.
 | |
| 	unexported bool
 | |
| 	mayForce   bool                // Forcibly allow visibility
 | |
| 	paddr      bool                // Was parent addressable?
 | |
| 	pvx, pvy   reflect.Value       // Parent values (always addressible)
 | |
| 	field      reflect.StructField // Field information
 | |
| }
 | |
| 
 | |
| func (sf StructField) Type() reflect.Type { return sf.typ }
 | |
| func (sf StructField) Values() (vx, vy reflect.Value) {
 | |
| 	if !sf.unexported {
 | |
| 		return sf.vx, sf.vy // CanInterface reports true
 | |
| 	}
 | |
| 
 | |
| 	// Forcibly obtain read-write access to an unexported struct field.
 | |
| 	if sf.mayForce {
 | |
| 		vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
 | |
| 		vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
 | |
| 		return vx, vy // CanInterface reports true
 | |
| 	}
 | |
| 	return sf.vx, sf.vy // CanInterface reports false
 | |
| }
 | |
| func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
 | |
| 
 | |
| // Name is the field name.
 | |
| func (sf StructField) Name() string { return sf.name }
 | |
| 
 | |
| // Index is the index of the field in the parent struct type.
 | |
| // See reflect.Type.Field.
 | |
| func (sf StructField) Index() int { return sf.idx }
 | |
| 
 | |
| // SliceIndex is an index operation on a slice or array at some index Key.
 | |
| type SliceIndex struct{ *sliceIndex }
 | |
| type sliceIndex struct {
 | |
| 	pathStep
 | |
| 	xkey, ykey int
 | |
| 	isSlice    bool // False for reflect.Array
 | |
| }
 | |
| 
 | |
| func (si SliceIndex) Type() reflect.Type             { return si.typ }
 | |
| func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
 | |
| func (si SliceIndex) String() string {
 | |
| 	switch {
 | |
| 	case si.xkey == si.ykey:
 | |
| 		return fmt.Sprintf("[%d]", si.xkey)
 | |
| 	case si.ykey == -1:
 | |
| 		// [5->?] means "I don't know where X[5] went"
 | |
| 		return fmt.Sprintf("[%d->?]", si.xkey)
 | |
| 	case si.xkey == -1:
 | |
| 		// [?->3] means "I don't know where Y[3] came from"
 | |
| 		return fmt.Sprintf("[?->%d]", si.ykey)
 | |
| 	default:
 | |
| 		// [5->3] means "X[5] moved to Y[3]"
 | |
| 		return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Key is the index key; it may return -1 if in a split state
 | |
| func (si SliceIndex) Key() int {
 | |
| 	if si.xkey != si.ykey {
 | |
| 		return -1
 | |
| 	}
 | |
| 	return si.xkey
 | |
| }
 | |
| 
 | |
| // SplitKeys are the indexes for indexing into slices in the
 | |
| // x and y values, respectively. These indexes may differ due to the
 | |
| // insertion or removal of an element in one of the slices, causing
 | |
| // all of the indexes to be shifted. If an index is -1, then that
 | |
| // indicates that the element does not exist in the associated slice.
 | |
| //
 | |
| // Key is guaranteed to return -1 if and only if the indexes returned
 | |
| // by SplitKeys are not the same. SplitKeys will never return -1 for
 | |
| // both indexes.
 | |
| func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
 | |
| 
 | |
| // MapIndex is an index operation on a map at some index Key.
 | |
| type MapIndex struct{ *mapIndex }
 | |
| type mapIndex struct {
 | |
| 	pathStep
 | |
| 	key reflect.Value
 | |
| }
 | |
| 
 | |
| func (mi MapIndex) Type() reflect.Type             { return mi.typ }
 | |
| func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
 | |
| func (mi MapIndex) String() string                 { return fmt.Sprintf("[%#v]", mi.key) }
 | |
| 
 | |
| // Key is the value of the map key.
 | |
| func (mi MapIndex) Key() reflect.Value { return mi.key }
 | |
| 
 | |
| // Indirect represents pointer indirection on the parent type.
 | |
| type Indirect struct{ *indirect }
 | |
| type indirect struct {
 | |
| 	pathStep
 | |
| }
 | |
| 
 | |
| func (in Indirect) Type() reflect.Type             { return in.typ }
 | |
| func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
 | |
| func (in Indirect) String() string                 { return "*" }
 | |
| 
 | |
| // TypeAssertion represents a type assertion on an interface.
 | |
| type TypeAssertion struct{ *typeAssertion }
 | |
| type typeAssertion struct {
 | |
| 	pathStep
 | |
| }
 | |
| 
 | |
| func (ta TypeAssertion) Type() reflect.Type             { return ta.typ }
 | |
| func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
 | |
| func (ta TypeAssertion) String() string                 { return fmt.Sprintf(".(%v)", ta.typ) }
 | |
| 
 | |
| // Transform is a transformation from the parent type to the current type.
 | |
| type Transform struct{ *transform }
 | |
| type transform struct {
 | |
| 	pathStep
 | |
| 	trans *transformer
 | |
| }
 | |
| 
 | |
| func (tf Transform) Type() reflect.Type             { return tf.typ }
 | |
| func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
 | |
| func (tf Transform) String() string                 { return fmt.Sprintf("%s()", tf.trans.name) }
 | |
| 
 | |
| // Name is the name of the Transformer.
 | |
| func (tf Transform) Name() string { return tf.trans.name }
 | |
| 
 | |
| // Func is the function pointer to the transformer function.
 | |
| func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
 | |
| 
 | |
| // Option returns the originally constructed Transformer option.
 | |
| // The == operator can be used to detect the exact option used.
 | |
| func (tf Transform) Option() Option { return tf.trans }
 | |
| 
 | |
| // pointerPath represents a dual-stack of pointers encountered when
 | |
| // recursively traversing the x and y values. This data structure supports
 | |
| // detection of cycles and determining whether the cycles are equal.
 | |
| // In Go, cycles can occur via pointers, slices, and maps.
 | |
| //
 | |
| // The pointerPath uses a map to represent a stack; where descension into a
 | |
| // pointer pushes the address onto the stack, and ascension from a pointer
 | |
| // pops the address from the stack. Thus, when traversing into a pointer from
 | |
| // reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
 | |
| // by checking whether the pointer has already been visited. The cycle detection
 | |
| // uses a seperate stack for the x and y values.
 | |
| //
 | |
| // If a cycle is detected we need to determine whether the two pointers
 | |
| // should be considered equal. The definition of equality chosen by Equal
 | |
| // requires two graphs to have the same structure. To determine this, both the
 | |
| // x and y values must have a cycle where the previous pointers were also
 | |
| // encountered together as a pair.
 | |
| //
 | |
| // Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
 | |
| // MapIndex with pointer information for the x and y values.
 | |
| // Suppose px and py are two pointers to compare, we then search the
 | |
| // Path for whether px was ever encountered in the Path history of x, and
 | |
| // similarly so with py. If either side has a cycle, the comparison is only
 | |
| // equal if both px and py have a cycle resulting from the same PathStep.
 | |
| //
 | |
| // Using a map as a stack is more performant as we can perform cycle detection
 | |
| // in O(1) instead of O(N) where N is len(Path).
 | |
| type pointerPath struct {
 | |
| 	// mx is keyed by x pointers, where the value is the associated y pointer.
 | |
| 	mx map[value.Pointer]value.Pointer
 | |
| 	// my is keyed by y pointers, where the value is the associated x pointer.
 | |
| 	my map[value.Pointer]value.Pointer
 | |
| }
 | |
| 
 | |
| func (p *pointerPath) Init() {
 | |
| 	p.mx = make(map[value.Pointer]value.Pointer)
 | |
| 	p.my = make(map[value.Pointer]value.Pointer)
 | |
| }
 | |
| 
 | |
| // Push indicates intent to descend into pointers vx and vy where
 | |
| // visited reports whether either has been seen before. If visited before,
 | |
| // equal reports whether both pointers were encountered together.
 | |
| // Pop must be called if and only if the pointers were never visited.
 | |
| //
 | |
| // The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
 | |
| // and be non-nil.
 | |
| func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
 | |
| 	px := value.PointerOf(vx)
 | |
| 	py := value.PointerOf(vy)
 | |
| 	_, ok1 := p.mx[px]
 | |
| 	_, ok2 := p.my[py]
 | |
| 	if ok1 || ok2 {
 | |
| 		equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
 | |
| 		return equal, true
 | |
| 	}
 | |
| 	p.mx[px] = py
 | |
| 	p.my[py] = px
 | |
| 	return false, false
 | |
| }
 | |
| 
 | |
| // Pop ascends from pointers vx and vy.
 | |
| func (p pointerPath) Pop(vx, vy reflect.Value) {
 | |
| 	delete(p.mx, value.PointerOf(vx))
 | |
| 	delete(p.my, value.PointerOf(vy))
 | |
| }
 | |
| 
 | |
| // isExported reports whether the identifier is exported.
 | |
| func isExported(id string) bool {
 | |
| 	r, _ := utf8.DecodeRuneInString(id)
 | |
| 	return unicode.IsUpper(r)
 | |
| }
 |