/* Note: This file is licenced differently from the rest of the project SPDX-License-Identifier: GPL-2.0 Copyright (C) UP9 Inc. */ #include "include/headers.h" #include "include/util.h" #include "include/maps.h" #include "include/log.h" #include "include/logger_messages.h" #include "include/pids.h" // Heap-like area for eBPF programs - stack size limited to 512 bytes, we must use maps for bigger (chunk) objects. // struct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(max_entries, 1); __type(key, int); __type(value, struct tlsChunk); } heap SEC(".maps"); static __always_inline int get_count_bytes(struct pt_regs *ctx, struct ssl_info* info, __u64 id) { int returnValue = PT_REGS_RC(ctx); if (info->count_ptr == NULL) { // ssl_read and ssl_write return the number of bytes written/read // return returnValue; } // ssl_read_ex and ssl_write_ex return 1 for success // if (returnValue != 1) { return 0; } // ssl_read_ex and ssl_write_ex write the number of bytes to an arg named *count // size_t countBytes; long err = bpf_probe_read(&countBytes, sizeof(size_t), (void*) info->count_ptr); if (err != 0) { log_error(ctx, LOG_ERROR_READING_BYTES_COUNT, id, err, 0l); return 0; } return countBytes; } static __always_inline int add_address_to_chunk(struct pt_regs *ctx, struct tlsChunk* chunk, __u64 id, __u32 fd) { __u32 pid = id >> 32; __u64 key = (__u64) pid << 32 | fd; struct fd_info *fdinfo = bpf_map_lookup_elem(&file_descriptor_to_ipv4, &key); if (fdinfo == NULL) { return 0; } int err = bpf_probe_read(chunk->address, sizeof(chunk->address), fdinfo->ipv4_addr); chunk->flags |= (fdinfo->flags & FLAGS_IS_CLIENT_BIT); if (err != 0) { log_error(ctx, LOG_ERROR_READING_FD_ADDRESS, id, err, 0l); return 0; } return 1; } static __always_inline void send_chunk_part(struct pt_regs *ctx, __u8* buffer, __u64 id, struct tlsChunk* chunk, int start, int end) { size_t recorded = MIN(end - start, sizeof(chunk->data)); if (recorded <= 0) { return; } chunk->recorded = recorded; chunk->start = start; // This ugly trick is for the ebpf verifier happiness // long err = 0; if (chunk->recorded == sizeof(chunk->data)) { err = bpf_probe_read(chunk->data, sizeof(chunk->data), buffer + start); } else { recorded &= (sizeof(chunk->data) - 1); // Buffer must be N^2 err = bpf_probe_read(chunk->data, recorded, buffer + start); } if (err != 0) { log_error(ctx, LOG_ERROR_READING_FROM_SSL_BUFFER, id, err, 0l); return; } bpf_perf_event_output(ctx, &chunks_buffer, BPF_F_CURRENT_CPU, chunk, sizeof(struct tlsChunk)); } static __always_inline void send_chunk(struct pt_regs *ctx, __u8* buffer, __u64 id, struct tlsChunk* chunk) { // ebpf loops must be bounded at compile time, we can't use (i < chunk->len / CHUNK_SIZE) // // https://lwn.net/Articles/794934/ // // However we want to run in kernel older than 5.3, hence we use "#pragma unroll" anyway // #pragma unroll for (int i = 0; i < MAX_CHUNKS_PER_OPERATION; i++) { if (chunk->len <= (CHUNK_SIZE * i)) { break; } send_chunk_part(ctx, buffer, id, chunk, CHUNK_SIZE * i, chunk->len); } } static __always_inline void output_ssl_chunk(struct pt_regs *ctx, struct ssl_info* info, __u64 id, __u32 flags) { int countBytes = get_count_bytes(ctx, info, id); if (countBytes <= 0) { return; } if (countBytes > (CHUNK_SIZE * MAX_CHUNKS_PER_OPERATION)) { log_error(ctx, LOG_ERROR_BUFFER_TOO_BIG, id, countBytes, 0l); return; } struct tlsChunk* chunk; int zero = 0; // If other thread, running on the same CPU get to this point at the same time like us (context switch) // the data will be corrupted - protection may be added in the future // chunk = bpf_map_lookup_elem(&heap, &zero); if (!chunk) { log_error(ctx, LOG_ERROR_ALLOCATING_CHUNK, id, 0l, 0l); return; } chunk->flags = flags; chunk->pid = id >> 32; chunk->tgid = id; chunk->len = countBytes; chunk->fd = info->fd; if (!add_address_to_chunk(ctx, chunk, id, chunk->fd)) { // Without an address, we drop the chunk because there is not much to do with it in Go // return; } send_chunk(ctx, info->buffer, id, chunk); } static __always_inline void ssl_uprobe(struct pt_regs *ctx, void* ssl, void* buffer, int num, struct bpf_map_def* map_fd, size_t *count_ptr) { __u64 id = bpf_get_current_pid_tgid(); if (!should_tap(id >> 32)) { return; } struct ssl_info *infoPtr = bpf_map_lookup_elem(map_fd, &id); struct ssl_info info = {}; if (infoPtr == NULL) { info.fd = -1; info.created_at_nano = bpf_ktime_get_ns(); } else { long err = bpf_probe_read(&info, sizeof(struct ssl_info), infoPtr); if (err != 0) { log_error(ctx, LOG_ERROR_READING_SSL_CONTEXT, id, err, ORIGIN_SSL_UPROBE_CODE); } if ((bpf_ktime_get_ns() - info.created_at_nano) > SSL_INFO_MAX_TTL_NANO) { // If the ssl info is too old, we don't want to use its info because it may be incorrect. // info.fd = -1; info.created_at_nano = bpf_ktime_get_ns(); } } info.count_ptr = count_ptr; info.buffer = buffer; long err = bpf_map_update_elem(map_fd, &id, &info, BPF_ANY); if (err != 0) { log_error(ctx, LOG_ERROR_PUTTING_SSL_CONTEXT, id, err, 0l); } } static __always_inline void ssl_uretprobe(struct pt_regs *ctx, struct bpf_map_def* map_fd, __u32 flags) { __u64 id = bpf_get_current_pid_tgid(); if (!should_tap(id >> 32)) { return; } struct ssl_info *infoPtr = bpf_map_lookup_elem(map_fd, &id); if (infoPtr == NULL) { log_error(ctx, LOG_ERROR_GETTING_SSL_CONTEXT, id, 0l, 0l); return; } struct ssl_info info; long err = bpf_probe_read(&info, sizeof(struct ssl_info), infoPtr); // Do not clean map on purpose, sometimes there are two calls to ssl_read in a raw // while the first call actually goes to read from socket, and we get the chance // to find the fd. The other call already have all the information and we don't // have the chance to get the fd. // // There are two risks keeping the map items // 1. It gets full - we solve it by using BPF_MAP_TYPE_LRU_HASH with hard limit // 2. We get wrong info of an old call - we solve it by comparing the timestamp // info before using it // // bpf_map_delete_elem(map_fd, &id); if (err != 0) { log_error(ctx, LOG_ERROR_READING_SSL_CONTEXT, id, err, ORIGIN_SSL_URETPROBE_CODE); return; } if (info.fd == -1) { log_error(ctx, LOG_ERROR_MISSING_FILE_DESCRIPTOR, id, 0l, 0l); return; } output_ssl_chunk(ctx, &info, id, flags); } SEC("uprobe/ssl_write") void BPF_KPROBE(ssl_write, void* ssl, void* buffer, int num) { ssl_uprobe(ctx, ssl, buffer, num, &ssl_write_context, 0); } SEC("uretprobe/ssl_write") void BPF_KPROBE(ssl_ret_write) { ssl_uretprobe(ctx, &ssl_write_context, 0); } SEC("uprobe/ssl_read") void BPF_KPROBE(ssl_read, void* ssl, void* buffer, int num) { ssl_uprobe(ctx, ssl, buffer, num, &ssl_read_context, 0); } SEC("uretprobe/ssl_read") void BPF_KPROBE(ssl_ret_read) { ssl_uretprobe(ctx, &ssl_read_context, FLAGS_IS_READ_BIT); } SEC("uprobe/ssl_write_ex") void BPF_KPROBE(ssl_write_ex, void* ssl, void* buffer, size_t num, size_t *written) { ssl_uprobe(ctx, ssl, buffer, num, &ssl_write_context, written); } SEC("uretprobe/ssl_write_ex") void BPF_KPROBE(ssl_ret_write_ex) { ssl_uretprobe(ctx, &ssl_write_context, 0); } SEC("uprobe/ssl_read_ex") void BPF_KPROBE(ssl_read_ex, void* ssl, void* buffer, size_t num, size_t *readbytes) { ssl_uprobe(ctx, ssl, buffer, num, &ssl_read_context, readbytes); } SEC("uretprobe/ssl_read_ex") void BPF_KPROBE(ssl_ret_read_ex) { ssl_uretprobe(ctx, &ssl_read_context, FLAGS_IS_READ_BIT); }