kubeshark/performance_analysis/plot_from_tapper_logs.py
Nimrod Gilboa Markevich de623488ab Make COLORMAP const
2022-05-15 08:42:01 +03:00

83 lines
2.3 KiB
Python

import matplotlib.pyplot as plt
import pandas as pd
import pathlib
import re
import sys
import typing
COLORMAP = plt.get_cmap('turbo')
# Extract cpu and rss samples from log files and plot them
# Input: List of log files
def append_sample(name: str, line: str, samples: typing.List[float]):
pattern = name + r': ?(\d+(\.\d+)?)'
maybe_sample = re.findall(pattern, line)
if len(maybe_sample) == 0:
return
sample = float(maybe_sample[0][0])
samples.append(sample)
def extract_samples(f: typing.IO) -> typing.Tuple[pd.Series, pd.Series, pd.Series]:
cpu_samples = []
rss_samples = []
count_samples = []
for line in f:
append_sample('cpu', line, cpu_samples)
append_sample('rss', line, rss_samples)
append_sample('"packetsCount"', line, count_samples)
cpu_samples = pd.Series(cpu_samples)
rss_samples = pd.Series(rss_samples)
count_samples = pd.Series(count_samples)
return cpu_samples, rss_samples, count_samples
if __name__ == '__main__':
filenames = sys.argv[1:]
cpu_samples_all_files = []
rss_samples_all_files = []
count_samples_all_files = []
for ii, filename in enumerate(filenames):
with open(filename, 'r') as f:
cpu_samples, rss_samples, count_samples = extract_samples(f)
cpu_samples.name = pathlib.Path(filename).name
rss_samples.name = pathlib.Path(filename).name
count_samples.name = pathlib.Path(filename).name
cpu_samples_all_files.append(cpu_samples)
rss_samples_all_files.append(rss_samples)
count_samples_all_files.append(count_samples)
cpu_samples_df = pd.concat(cpu_samples_all_files, axis=1)
rss_samples_df = pd.concat(rss_samples_all_files, axis=1)
count_samples_df = pd.concat(count_samples_all_files, axis=1)
ax = plt.subplot(3, 1, 1)
cpu_samples_df.plot(cmap=COLORMAP, ax=ax)
plt.title('cpu')
plt.legend()
plt.xlabel('# sample')
plt.ylabel('cpu (%)')
ax = plt.subplot(3, 1, 2)
rss_samples_df.plot(cmap=COLORMAP, ax=ax)
plt.title('rss')
plt.legend()
plt.xlabel('# sample')
plt.ylabel('mem (MB)')
ax = plt.subplot(3, 1, 3)
count_samples_df.plot(cmap=COLORMAP, ax=ax)
plt.title('packetsCount')
plt.legend()
plt.xlabel('# sample')
plt.ylabel('packetsCount')
plt.show()