mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 07:35:18 +00:00
Harrison/tfidf retriever (#2440)
This commit is contained in:
parent
a63cfad558
commit
00bc8df640
@ -14,7 +14,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"id": "393ac030",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -32,13 +32,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 2,
|
||||
"id": "bcb3c8c2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"elasticsearch_url=\"http://localhost:9200\"\n",
|
||||
"retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-3\")"
|
||||
"retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-4\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -66,21 +66,21 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 3,
|
||||
"id": "98b1c017",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['386c76c9-4355-4c12-aaeb-7b80054caf93',\n",
|
||||
" 'fffd279c-a0c9-4158-a904-6e242c517c99',\n",
|
||||
" '7f5528a3-18d0-43b0-894d-f6770a002219',\n",
|
||||
" 'e2ef5e32-d5bd-44e2-b045-cfc5a8e0a0a1',\n",
|
||||
" 'cce8ba48-e473-4235-bca2-2c8d65e73ccf']"
|
||||
"['cbd4cb47-8d9f-4f34-b80e-ea871bc49856',\n",
|
||||
" 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365',\n",
|
||||
" '8631bfc8-7c12-48ee-ab56-8ad5f373676e',\n",
|
||||
" '8be8374c-3253-4d87-928d-d73550a2ecf0',\n",
|
||||
" 'd79f457b-2842-4eab-ae10-77aa420b53d7']"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -101,7 +101,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 4,
|
||||
"id": "c0455218",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -111,7 +111,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 5,
|
||||
"id": "7dfa5c29",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -122,7 +122,7 @@
|
||||
" Document(page_content='foo bar', metadata={})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
127
docs/modules/indexes/retrievers/examples/tf_idf_retriever.ipynb
Normal file
127
docs/modules/indexes/retrievers/examples/tf_idf_retriever.ipynb
Normal file
@ -0,0 +1,127 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ab66dd43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# TF-IDF Retriever\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn.\n",
|
||||
"\n",
|
||||
"For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "393ac030",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.retrievers import TFIDFRetriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a801b57c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install scikit-learn"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aaf80e7f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create New Retriever with Texts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "98b1c017",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "08437fa2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use Retriever\n",
|
||||
"\n",
|
||||
"We can now use the retriever!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "c0455218",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = retriever.get_relevant_documents(\"foo\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7dfa5c29",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='foo', metadata={}),\n",
|
||||
" Document(page_content='foo bar', metadata={}),\n",
|
||||
" Document(page_content='hello', metadata={}),\n",
|
||||
" Document(page_content='world', metadata={})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "74bd9256",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -3,6 +3,7 @@ from langchain.retrievers.elastic_search_bm25 import ElasticSearchBM25Retriever
|
||||
from langchain.retrievers.metal import MetalRetriever
|
||||
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
|
||||
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
|
||||
from langchain.retrievers.tfidf import TFIDFRetriever
|
||||
|
||||
__all__ = [
|
||||
"ChatGPTPluginRetriever",
|
||||
@ -10,4 +11,5 @@ __all__ = [
|
||||
"PineconeHybridSearchRetriever",
|
||||
"MetalRetriever",
|
||||
"ElasticSearchBM25Retriever",
|
||||
"TFIDFRetriever",
|
||||
]
|
||||
|
@ -49,29 +49,27 @@ class ElasticSearchBM25Retriever(BaseRetriever):
|
||||
es = Elasticsearch(elasticsearch_url)
|
||||
|
||||
# Define the index settings and mappings
|
||||
index_settings = {
|
||||
"settings": {
|
||||
"analysis": {"analyzer": {"default": {"type": "standard"}}},
|
||||
"similarity": {
|
||||
"custom_bm25": {
|
||||
"type": "BM25",
|
||||
"k1": k1,
|
||||
"b": b,
|
||||
}
|
||||
},
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "text",
|
||||
"similarity": "custom_bm25", # Use the custom BM25 similarity
|
||||
}
|
||||
settings = {
|
||||
"analysis": {"analyzer": {"default": {"type": "standard"}}},
|
||||
"similarity": {
|
||||
"custom_bm25": {
|
||||
"type": "BM25",
|
||||
"k1": k1,
|
||||
"b": b,
|
||||
}
|
||||
},
|
||||
}
|
||||
mappings = {
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "text",
|
||||
"similarity": "custom_bm25", # Use the custom BM25 similarity
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Create the index with the specified settings and mappings
|
||||
es.indices.create(index=index_name, body=index_settings)
|
||||
es.indices.create(index=index_name, mappings=mappings, settings=settings)
|
||||
return cls(es, index_name)
|
||||
|
||||
def add_texts(
|
||||
|
47
langchain/retrievers/tfidf.py
Normal file
47
langchain/retrievers/tfidf.py
Normal file
@ -0,0 +1,47 @@
|
||||
"""TF-IDF Retriever.
|
||||
|
||||
Largely based on
|
||||
https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb"""
|
||||
from typing import Any, List
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
|
||||
|
||||
class TFIDFRetriever(BaseRetriever, BaseModel):
|
||||
vectorizer: Any
|
||||
docs: List[Document]
|
||||
tfidf_array: Any
|
||||
k: int = 4
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@classmethod
|
||||
def from_texts(cls, texts: List[str], **kwargs: Any) -> "TFIDFRetriever":
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
|
||||
vectorizer = TfidfVectorizer()
|
||||
tfidf_array = vectorizer.fit_transform(texts)
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array, **kwargs)
|
||||
|
||||
def get_relevant_documents(self, query: str) -> List[Document]:
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
query_vec = self.vectorizer.transform(
|
||||
[query]
|
||||
) # Ip -- (n_docs,x), Op -- (n_docs,n_Feats)
|
||||
results = cosine_similarity(self.tfidf_array, query_vec).reshape(
|
||||
(-1,)
|
||||
) # Op -- (n_docs,1) -- Cosine Sim with each doc
|
||||
return_docs = []
|
||||
for i in results.argsort()[-self.k :][::-1]:
|
||||
return_docs.append(self.docs[i])
|
||||
return return_docs
|
||||
|
||||
async def aget_relevant_documents(self, query: str) -> List[Document]:
|
||||
raise NotImplementedError
|
Loading…
Reference in New Issue
Block a user