mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-05 06:33:20 +00:00
community: add AzureOpenAIWhisperParser (#27796)
Commandeered from https://github.com/langchain-ai/langchain/pull/26757. --------- Co-authored-by: Sheepsta300 <128811766+Sheepsta300@users.noreply.github.com>
This commit is contained in:
parent
b631b0a596
commit
0172d938b4
@ -0,0 +1,192 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure OpenAI Whisper Parser"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
">[Azure OpenAI Whisper Parser](https://learn.microsoft.com/en-us/azure/ai-services/speech-service/whisper-overview) is a wrapper around the Azure OpenAI Whisper API which utilizes machine learning to transcribe audio files to english text. \n",
|
||||
">\n",
|
||||
">The Parser supports `.mp3`, `.mp4`, `.mpeg`, `.mpga`, `.m4a`, `.wav`, and `.webm`.\n",
|
||||
"\n",
|
||||
"The current implementation follows LangChain core principles and can be used with other loaders to handle both audio downloading and parsing. As a result of this the parser will `yield` an `Iterator[Document]`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The service requires Azure credentials, Azure endpoint and Whisper Model deployment, which can be set up by following the guide [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/whisper-quickstart?tabs=command-line%2Cpython-new%2Cjavascript&pivots=programming-language-python). Furthermore, the required dependencies must be installed.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -Uq langchain langchain-community openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `AzureOpenAIWhisperParser`'s method, `.lazy_parse`, accepts a `Blob` object as a parameter containing the file path of the file to be transcribed."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.documents.base import Blob\n",
|
||||
"\n",
|
||||
"audio_path = \"path/to/your/audio/file\"\n",
|
||||
"audio_blob = Blob(path=audio_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.parsers.audio import AzureOpenAIWhisperParser\n",
|
||||
"\n",
|
||||
"endpoint = \"<your_endpoint>\"\n",
|
||||
"key = \"<your_api_key\"\n",
|
||||
"version = \"<your_api_version>\"\n",
|
||||
"name = \"<your_deployment_name>\"\n",
|
||||
"\n",
|
||||
"parser = AzureOpenAIWhisperParser(\n",
|
||||
" api_key=key, azure_endpoint=endpoint, api_version=version, deployment_name=name\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"documents = parser.lazy_parse(blob=audio_blob)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for doc in documents:\n",
|
||||
" print(doc.page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example 2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `AzureOpenAIWhisperParser` can also be used in conjuction with audio loaders, like the `YoutubeAudioLoader` with a `GenericLoader`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.blob_loaders.youtube_audio import (\n",
|
||||
" YoutubeAudioLoader,\n",
|
||||
")\n",
|
||||
"from langchain_community.document_loaders.generic import GenericLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Must be a list\n",
|
||||
"url = [\"www.youtube.url.com\"]\n",
|
||||
"\n",
|
||||
"save_dir = \"save/directory/\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"name = \"<your_deployment_name>\"\n",
|
||||
"\n",
|
||||
"loader = GenericLoader(\n",
|
||||
" YoutubeAudioLoader(url, save_dir), AzureOpenAIWhisperParser(deployment_name=name)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"docs = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for doc in documents:\n",
|
||||
" print(doc.page_content)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -1,7 +1,8 @@
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, Literal, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterator, Literal, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
@ -12,6 +13,218 @@ from langchain_community.utils.openai import is_openai_v1
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AzureOpenAIWhisperParser(BaseBlobParser):
|
||||
"""
|
||||
Transcribe and parse audio files using Azure OpenAI Whisper.
|
||||
|
||||
This parser integrates with the Azure OpenAI Whisper model to transcribe
|
||||
audio files. It differs from the standard OpenAI Whisper parser, requiring
|
||||
an Azure endpoint and credentials. The parser is limited to files under 25 MB.
|
||||
|
||||
**Note**:
|
||||
This parser uses the Azure OpenAI API, providing integration with the Azure
|
||||
ecosystem, and making it suitable for workflows involving other Azure services.
|
||||
|
||||
For files larger than 25 MB, consider using Azure AI Speech batch transcription:
|
||||
https://learn.microsoft.com/azure/ai-services/speech-service/batch-transcription-create?pivots=rest-api#use-a-whisper-model
|
||||
|
||||
Setup:
|
||||
1. Follow the instructions here to deploy Azure Whisper:
|
||||
https://learn.microsoft.com/azure/ai-services/openai/whisper-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python
|
||||
2. Install ``langchain`` and set the following environment variables:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U langchain langchain-community
|
||||
|
||||
export AZURE_OPENAI_API_KEY="your-api-key"
|
||||
export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/"
|
||||
export OPENAI_API_VERSION="your-api-version"
|
||||
|
||||
Example Usage:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.community import AzureOpenAIWhisperParser
|
||||
|
||||
whisper_parser = AzureOpenAIWhisperParser(
|
||||
deployment_name="your-whisper-deployment",
|
||||
api_version="2024-06-01",
|
||||
api_key="your-api-key",
|
||||
# other params...
|
||||
)
|
||||
|
||||
audio_blob = Blob(path="your-audio-file-path")
|
||||
response = whisper_parser.lazy_parse(audio_blob)
|
||||
|
||||
for document in response:
|
||||
print(document.page_content)
|
||||
|
||||
Integration with Other Loaders:
|
||||
The AzureOpenAIWhisperParser can be used with video/audio loaders and
|
||||
`GenericLoader` to automate retrieval and parsing.
|
||||
|
||||
YoutubeAudioLoader Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders.blob_loaders import (
|
||||
YoutubeAudioLoader
|
||||
)
|
||||
from langchain_community.document_loaders.generic import GenericLoader
|
||||
|
||||
# Must be a list
|
||||
youtube_url = ["https://your-youtube-url"]
|
||||
save_dir = "directory-to-download-videos"
|
||||
|
||||
loader = GenericLoader(
|
||||
YoutubeAudioLoader(youtube_url, save_dir),
|
||||
AzureOpenAIWhisperParser(deployment_name="your-deployment-name")
|
||||
)
|
||||
|
||||
docs = loader.load()
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
api_key: Optional[str] = None,
|
||||
azure_endpoint: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
azure_ad_token_provider: Union[Callable[[], str], None] = None,
|
||||
language: Optional[str] = None,
|
||||
prompt: Optional[str] = None,
|
||||
response_format: Union[
|
||||
Literal["json", "text", "srt", "verbose_json", "vtt"], None
|
||||
] = None,
|
||||
temperature: Optional[float] = None,
|
||||
deployment_name: str,
|
||||
max_retries: int = 3,
|
||||
):
|
||||
"""
|
||||
Initialize the AzureOpenAIWhisperParser.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]):
|
||||
Azure OpenAI API key. If not provided, defaults to the
|
||||
`AZURE_OPENAI_API_KEY` environment variable.
|
||||
azure_endpoint (Optional[str]):
|
||||
Azure OpenAI service endpoint. Defaults to `AZURE_OPENAI_ENDPOINT`
|
||||
environment variable if not set.
|
||||
api_version (Optional[str]):
|
||||
API version to use,
|
||||
defaults to the `OPENAI_API_VERSION` environment variable.
|
||||
azure_ad_token_provider (Union[Callable[[], str], None]):
|
||||
Azure Active Directory token for authentication (if applicable).
|
||||
language (Optional[str]):
|
||||
Language in which the request should be processed.
|
||||
prompt (Optional[str]):
|
||||
Custom instructions or prompt for the Whisper model.
|
||||
response_format (Union[str, None]):
|
||||
The desired output format. Options: "json", "text", "srt",
|
||||
"verbose_json", "vtt".
|
||||
temperature (Optional[float]):
|
||||
Controls the randomness of the model's output.
|
||||
deployment_name (str):
|
||||
The deployment name of the Whisper model.
|
||||
max_retries (int):
|
||||
Maximum number of retries for failed API requests.
|
||||
Raises:
|
||||
ImportError:
|
||||
If the required package `openai` is not installed.
|
||||
"""
|
||||
self.api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY")
|
||||
self.azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
|
||||
self.api_version = api_version or os.environ.get("OPENAI_API_VERSION")
|
||||
self.azure_ad_token_provider = azure_ad_token_provider
|
||||
|
||||
self.language = language
|
||||
self.prompt = prompt
|
||||
self.response_format = response_format
|
||||
self.temperature = temperature
|
||||
|
||||
self.deployment_name = deployment_name
|
||||
self.max_retries = max_retries
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"openai package not found, please install it with "
|
||||
"`pip install openai`"
|
||||
)
|
||||
|
||||
if is_openai_v1():
|
||||
self._client = openai.AzureOpenAI(
|
||||
api_key=self.api_key,
|
||||
azure_endpoint=self.azure_endpoint,
|
||||
api_version=self.api_version,
|
||||
max_retries=self.max_retries,
|
||||
azure_ad_token=self.azure_ad_token_provider,
|
||||
)
|
||||
else:
|
||||
if self.api_key:
|
||||
openai.api_key = self.api_key
|
||||
if self.azure_endpoint:
|
||||
openai.api_base = self.azure_endpoint
|
||||
if self.api_version:
|
||||
openai.api_version = self.api_version
|
||||
openai.api_type = "azure"
|
||||
self._client = openai
|
||||
|
||||
@property
|
||||
def _create_params(self) -> Dict[str, Any]:
|
||||
params = {
|
||||
"language": self.language,
|
||||
"prompt": self.prompt,
|
||||
"response_format": self.response_format,
|
||||
"temperature": self.temperature,
|
||||
}
|
||||
return {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""
|
||||
Lazily parse the provided audio blob for transcription.
|
||||
|
||||
Args:
|
||||
blob (Blob):
|
||||
The audio file in Blob format to be transcribed.
|
||||
|
||||
Yields:
|
||||
Document:
|
||||
Parsed transcription from the audio file.
|
||||
|
||||
Raises:
|
||||
Exception:
|
||||
If an error occurs during transcription.
|
||||
"""
|
||||
|
||||
file_obj = open(str(blob.path), "rb")
|
||||
|
||||
# Transcribe
|
||||
try:
|
||||
if is_openai_v1():
|
||||
transcript = self._client.audio.transcriptions.create(
|
||||
model=self.deployment_name,
|
||||
file=file_obj,
|
||||
**self._create_params,
|
||||
)
|
||||
else:
|
||||
transcript = self._client.Audio.transcribe(
|
||||
model=self.deployment_name,
|
||||
deployment_id=self.deployment_name,
|
||||
file=file_obj,
|
||||
**self._create_params,
|
||||
)
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
yield Document(
|
||||
page_content=transcript.text
|
||||
if not isinstance(transcript, str)
|
||||
else transcript,
|
||||
metadata={"source": blob.source},
|
||||
)
|
||||
|
||||
|
||||
class OpenAIWhisperParser(BaseBlobParser):
|
||||
"""Transcribe and parse audio files.
|
||||
|
||||
@ -19,7 +232,7 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key
|
||||
chunk_duration_threshold: minimum duration of a chunk in seconds
|
||||
chunk_duration_threshold: Minimum duration of a chunk in seconds
|
||||
NOTE: According to the OpenAI API, the chunk duration should be at least 0.1
|
||||
seconds. If the chunk duration is less or equal than the threshold,
|
||||
it will be skipped.
|
||||
@ -61,8 +274,6 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
@ -85,11 +296,11 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
if self.api_key:
|
||||
openai.api_key = self.api_key
|
||||
if self.base_url:
|
||||
openai.base_url = self.base_url
|
||||
openai.api_base = self.base_url
|
||||
|
||||
# Audio file from disk
|
||||
audio = AudioSegment.from_file(blob.path)
|
||||
|
||||
audio = AudioSegment.from_file(blob.path)
|
||||
# Define the duration of each chunk in minutes
|
||||
# Need to meet 25MB size limit for Whisper API
|
||||
chunk_duration = 20
|
||||
@ -240,8 +451,6 @@ class OpenAIWhisperParserLocal(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
from pydub import AudioSegment
|
||||
except ImportError:
|
||||
@ -436,8 +645,6 @@ class FasterWhisperParser(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
from pydub import AudioSegment
|
||||
except ImportError:
|
||||
|
BIN
libs/community/tests/examples/hello_world.m4a
Normal file
BIN
libs/community/tests/examples/hello_world.m4a
Normal file
Binary file not shown.
@ -0,0 +1,104 @@
|
||||
"""Tests for the Azure OpenAI Whisper parser."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.documents.base import Blob
|
||||
|
||||
from langchain_community.document_loaders.parsers.audio import AzureOpenAIWhisperParser
|
||||
|
||||
_THIS_DIR = Path(__file__).parents[3]
|
||||
|
||||
_EXAMPLES_DIR = _THIS_DIR / "examples"
|
||||
AUDIO_M4A = _EXAMPLES_DIR / "hello_world.m4a"
|
||||
|
||||
|
||||
@pytest.mark.requires("openai")
|
||||
@patch("openai.AzureOpenAI")
|
||||
def test_azure_openai_whisper(mock_client: Mock) -> None:
|
||||
endpoint = "endpoint"
|
||||
key = "key"
|
||||
version = "115"
|
||||
name = "model"
|
||||
|
||||
parser = AzureOpenAIWhisperParser(
|
||||
api_key=key, azure_endpoint=endpoint, api_version=version, deployment_name=name
|
||||
)
|
||||
mock_client.assert_called_once_with(
|
||||
api_key=key,
|
||||
azure_endpoint=endpoint,
|
||||
api_version=version,
|
||||
max_retries=3,
|
||||
azure_ad_token=None,
|
||||
)
|
||||
assert parser._client == mock_client()
|
||||
|
||||
|
||||
@pytest.mark.requires("openai")
|
||||
def test_is_openai_v1_lazy_parse(mocker: Any) -> None:
|
||||
endpoint = "endpoint"
|
||||
key = "key"
|
||||
version = "115"
|
||||
name = "model"
|
||||
|
||||
mock_blob = mocker.Mock(spec=Blob)
|
||||
mock_blob.path = AUDIO_M4A
|
||||
mock_blob.source = "test_source"
|
||||
|
||||
mock_openai_client = mocker.Mock()
|
||||
|
||||
mock_openai_client.audio.transcriptions.create.return_value = mocker.Mock()
|
||||
mock_openai_client.audio.transcriptions.create.return_value.text = (
|
||||
"Transcribed text"
|
||||
)
|
||||
|
||||
mocker.patch("langchain_community.utils.openai.is_openai_v1", return_value=True)
|
||||
|
||||
parser = AzureOpenAIWhisperParser(
|
||||
api_key=key, azure_endpoint=endpoint, api_version=version, deployment_name=name
|
||||
)
|
||||
|
||||
parser._client = mock_openai_client
|
||||
|
||||
result = list(parser.lazy_parse(mock_blob))
|
||||
|
||||
assert len(result) == 1
|
||||
assert isinstance(result[0], Document)
|
||||
assert result[0].page_content == "Transcribed text"
|
||||
assert result[0].metadata["source"] == "test_source"
|
||||
|
||||
|
||||
@pytest.mark.requires("openai")
|
||||
def test_is_not_openai_v1_lazy_parse(mocker: Any) -> None:
|
||||
endpoint = "endpoint"
|
||||
key = "key"
|
||||
version = "115"
|
||||
name = "model"
|
||||
|
||||
mock_blob = mocker.Mock(spec=Blob)
|
||||
mock_blob.path = AUDIO_M4A
|
||||
mock_blob.source = "test_source"
|
||||
|
||||
mock_openai_client = mocker.Mock()
|
||||
|
||||
mock_openai_client.audio.transcriptions.create.return_value = mocker.Mock()
|
||||
mock_openai_client.audio.transcriptions.create.return_value.text = (
|
||||
"Transcribed text"
|
||||
)
|
||||
|
||||
mocker.patch("langchain_community.utils.openai.is_openai_v1", return_value=False)
|
||||
|
||||
parser = AzureOpenAIWhisperParser(
|
||||
api_key=key, azure_endpoint=endpoint, api_version=version, deployment_name=name
|
||||
)
|
||||
parser._client = mock_openai_client
|
||||
|
||||
result = list(parser.lazy_parse(mock_blob))
|
||||
|
||||
assert len(result) == 1
|
||||
assert isinstance(result[0], Document)
|
||||
assert result[0].page_content == "Transcribed text"
|
||||
assert result[0].metadata["source"] == "test_source"
|
Loading…
Reference in New Issue
Block a user