mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 20:46:45 +00:00
Fix SupbaseVectoreStore write operation timeout (#12318)
**Description** This small change will make chunk_size a configurable parameter for loading documents into a Supabase database. **Issue** https://github.com/langchain-ai/langchain/issues/11422 **Dependencies** No chanages **Twitter** @ j1philli **Reminder** If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --------- Co-authored-by: Greg Richardson <greg.nmr@gmail.com>
This commit is contained in:
@@ -197,7 +197,7 @@
|
||||
"id": "5abb9b93",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Insert the above documents into the database. Embeddings will automatically be generated for each document."
|
||||
"Insert the above documents into the database. Embeddings will automatically be generated for each document. You can adjust the chunk_size based on the amount of documents you have. The default is 500 but lowering it may be necessary."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -208,7 +208,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"vector_store = SupabaseVectorStore.from_documents(docs, embeddings, client=supabase, table_name=\"documents\", query_name=\"match_documents\")"
|
||||
"vector_store = SupabaseVectorStore.from_documents(docs, embeddings, client=supabase, table_name=\"documents\", query_name=\"match_documents\", chunk_size=500)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Reference in New Issue
Block a user